简介:现行高中数学教材中,将“两个正数的算术平均数不小于几何平均数”这一结论称为“重要不等式”,又称为“均值定理”或“基本不等式”,即“若a,b∈R+,则a+b/2≥(ab)~(1/2)”.利用这一定理不但可以证明有关代数式的不等关系,我们也可以用它来求一些简单函数的最值.但需要特别小心的是:用均值定理求最值必须满足“一正、二定、三取等”,任何一条不满足都可能使得所求的值不是“最值”.以下举例说明.
均值定理求最值常见问题剖析