简介:将真空烧结的铁基合金奥氏体化、油淬后,在600~700℃温度下进行回火处理,保温1h,空冷。测试回火后合金的硬度和冲击韧性,并用金相显微镜、X射线衍射(XRD)、扫描电镜(SEM)观察和分析合金的组织、结构与断口形貌,研究回火温度对铁基合金组织与力学性能的影响。结果表明:随回火温度升高,第二相碳化物粒子M23C6的含量(质量分数)基本保持不变,约为3.5%;碳化物M6C的数量大幅减少,平均尺寸明显减小,碳化物M6C的第二相强化效果降低,硬度下降,同时基体组织软化,冲击吸收功增大。回火温度为675℃时,铁基合金保持较高的硬度40HRC,冲击韧性较回火前提高11%。回火处理后的铁基合金断口形貌为典型的沿晶断裂。
简介:对退火态AHPT15M粉末高速钢进行盐浴淬火处理,然后对退火态样品与淬火态样品进行深冷处理、回火处理和同步热磁分析,研究深冷处理对AHPT15M粉末高速钢回火转变的影响。结果表明,退火态粉末高速钢中的铁素体含量(体积分数)约为71.5%;淬火态钢中的马氏体含量(体积分数,下同)约为45.2%,在经过1、2、3次823K/1h连续回火处理后,马氏体含量分别约为68.5%、71.0%和71.3%;回火前增加143K深冷处理工序,在深冷后和l、2、3次回火后,钢中马氏体含量分别约为59.8%、69.9%、70.9%和71.3%。深冷处理可提前残留奥氏体向马氏体的转变进程、抑制残留奥氏体中的碳化物析出,并促进马氏体中更大量(约2.3%)的微细碳化物析出,使钢的硬度提高52HV0.1。
简介:采用Al-3.8Cu-1.0Mg-0.75Si铝合金粉末,分别在高纯氮气、高纯氩气、高纯氢气和分解氨等4种气氛下烧结,对比研究不同烧结气氛下制备的合金致密度、力学性能、尺寸变化和显微组织等性能。同时研究高纯氮气气氛下烧结温度对合金性能的影响。结果表明,在590℃烧结温度条件下,高纯氮气气氛中烧结的合金性能最佳,密度达2.66g/cm3、致密度为97.1%,硬度为23HRB,抗拉强度为205MPa,尺寸收缩率为1.65%;高纯氢气中烧结的合金密度、硬度及强度都最低,抗拉强度为96MPa,屈服强度只有74MPa,合金组织中存在大量孔隙。随烧结温度升高,烧结坯中的液相逐渐增多,使合金烧结密度增大,强度提高,在590℃烧结的合金抗拉强度最高,为205MPa;610℃烧结时产生过烧现象,元素偏析严重,合金性能下降。
简介:Ni-Cr-Mo合金经冷压成型后于真空中以不同温度进行烧结.通过测定其相对密度、线收缩率、拉伸强度和硬度,研究烧结温度对合金性能的影响.研究结果表明:当烧结温度不超过1330℃时,合金的相对密度、收缩率、拉伸强度和硬度随烧结温度的上升而缓慢增加;当温度上升到1360℃时,合金的这些性能指标急剧增大;当温度上升到1390℃时,烧结后的合金试样外形发生严重变形.
简介:采用厚20μm的非晶态Ti-Zr-Ni-Cu钎料,真空钎焊连接用于聚变堆面向等离子体部件的钨和铜铬锆合金,钎焊温度分别为860、880和900℃,对880℃下的钎焊样品进行热等静压(HIP)处理。采用SEM和EDS分析连接接头的形貌和成分,用静载剪切法测量焊接接头强度。测试结果表明在860~880℃下钎焊10min能够获得较好的连接界面,经880℃钎焊后焊接接头的剪切强度为16.57MPa,880℃钎焊后HIP处理的试样界面结合强度提高至142.73MPa,说明真空钎焊后HIP处理可以显著改善接头的结合强度。
简介:以三氯甲基硅烷(CH3SiCl3)为前驱体,采用化学气相沉积法(Chemicalvapordeposition,CVD),在原位生长有碳纳米管(Carbonnanotubes,CNTs)的C/C复合材料表面制备SiC涂层。用扫描电镜(SEM)和X射线能谱仪(EDS)观察和分析涂层微观形貌及成份。研究沉积温度(1000~1150℃)对SiC涂层的表面、截面以及SiC颗粒的微观形貌的影响。结果表明:在1000℃下反应时,得到晶须状SiC;沉积温度为1050℃时涂层平整、致密;沉积温度提高到1100℃时,涂层粗糙,致密度下降;1150℃下形成类似岛状组织,SiC颗粒团聚长大,涂层粗糙,并有很多裂纹和孔洞,致密度低。对涂层成份和断口形貌研究表明,基体和涂层之间有1个过渡区,SiC涂层和基体之间结合良好。
简介:以纯度为99.99%的纯金属In和SnCl4·5H2O为原料,采用化学共沉淀法制备铟锡氧化物(ITO)纳米粉末。对ITO前驱体进行TG-DSC分析,并借助XRD、SEM、TEM、BET、XPS等分析测试方法对ITO粉末的物相组成、显微形貌和粒度进行表征;研究反应终点pH值和煅烧温度对制得的ITO粉末物相组成、显微形貌和粒度的影响。结果表明:在液相中加入硅酸钠,反应温度为60℃,反应终点pH值约为8,陈化60min,在750℃煅烧2h的条件下,所制得的ITO纳米粉末不含SnO2相,为单相结构,是1种立方结构的In2O3固溶体;粉末纯度很高(99.99%),粒径均匀,颗粒尺寸在30~60nm之间,比表面积为34.26m2/g,形貌为近球形,且团聚系数小。
简介:采用混合元素粉末法,通过冷等静压成形和真空烧结,制备Ti600合金(名义成分为Ti-6Al-2.8Sn-4Zr-0.5Mo-0.4Si-0.1Y),研究烧结温度对合金显微组织以及密度与力学性能的影响。结果表明,烧结温度为1100℃时,合金组织为杂乱无章的α层片组织,而在1200℃下烧结时α层片组织开始规则排列,形成α丛束,当烧结温度达到1300℃时,α层片组织基本都形成α丛束。在合金组织中Zr元素和Mo元素固溶于β-Ti相,Al元素固溶于α-Ti相,Si元素富集于析出物,Sn、Y元素分布均匀。随烧结温度升高,合金中孔隙和α-Ti相数量逐渐减少,β-Ti相数量逐渐增加,合金的致密度提高,力学性能明显提升,1300℃温度下烧结的合金致密度为92.8%,硬度(HV)为324.0,抗拉强度和伸长率分别为622.6MPa和5.0%。
简介:以M2型高速钢颗粒为增强体,采用放电等离子烧结技术,在850~1000℃温度下制备高速钢颗粒增强钛基复合材料,研究烧结温度对复合材料显微组织以及硬度与摩擦性能的影响。结果表明,高速钢颗粒与钛基体的界面过渡层未发现孔洞或Ti-Fe金属间化合物,材料的最高致密度达到96.8%。在850℃的烧结温度下,高速钢颗粒周围析出一层碳化物,随烧结温度升高,碳化物因C的扩散而消失,高速钢颗粒中的W、Mo在高速钢颗粒周围富集。高速钢颗粒与钛基体的界面处硬度较高,1000℃下钛基体的硬度(HV)达426.9。高速钢颗粒的添加有利于改善钛的摩擦性能,高速钢颗粒增强钛基复合材料的磨损方式以黏着磨损为主。随烧结温度升高,材料的硬度逐渐升高且耐磨性增强。
简介:对7B50铝合金热轧板在460~490℃范围内进行固溶处理、室温水淬及人工时效,通过室温力学性能测试、慢应变速率拉伸实验及电导率测试,结合光学显微镜,扫描电镜和能谱分析,研究固溶温度对Al-Zn-Mg-Cu铝合金组织与应力腐蚀的影响。结果表明,提高固溶温度能有效减少残留相,增加再结晶的体积分数。当固溶温度从460℃提高到490℃时,屈服强度(σ0.2)和抗拉强度(σb)分别提高20.9%和23.5%,固溶温度从480℃升高到490℃时,强度变化不大,但随着固溶温度升高,伸长率先提高后降低,抗应力腐蚀性能先升高后降低。当固溶温度为480℃时,应力腐蚀敏感性最低,综合性能较好。残留相增多和再结晶程度提高是引起应力腐蚀敏感性提高的主要原因。在腐蚀溶液中,应力腐蚀断口形貌为典型的沿晶断裂。
简介:采用选择性激光熔覆法,在基板温度分别为100,150,和200℃条件下制备M2粉末高速钢合金,分析基板温度对合金组织结构与力学性能的影响。结果表明,基板温度升高有利于提高M2粉末高速钢的致密度和整体组织的均匀性。当基板温度为200℃时,高速钢组织均匀致密,各元素固溶程度高,且碳化物含量高,组织中柱状晶不再沿Z轴方向单一生长,同时合金的显微硬度(HV0.1)达到最高,HV0.1为1150,相比基板温度为100℃时的合金提高近40%。随基板温度从100℃升高到200℃,沿Z轴打印的M2高速钢室温抗拉强度从865.23MPa降低到443.85MPa,主要原因是合金中单一方向的柱状晶数量减少。
简介:通过粉末冶金原位合成法制备Al3Ni金属间化合物增强铝基复合材料。采用X射线衍射,扫描电镜,硬度测试和压缩强度测试,研究烧结温度对复合材料微观结构和力学性能的影响。结果表明:在铝基体中成功获得了均匀分布的金属间化合物Al3Ni增强相;随烧结温度从570℃上升到590℃,复合材料的密度从2.435g/cm^-3上升到2.990g/cm^-3,维氏硬度从~24升高到~37;经590℃烧结制备的复合材料表现出了高的压缩强度(255MPa)和伸长率(~40%)。