学科分类
/ 3
56 个结果
  • 简介:由中南大学刘咏教授、西北有色金属研究院汤慧萍教授著成的《粉末冶金钛基结构材料》一书已由中南大学出版社出版。该书为国家出版基金项目“有色金属理论与技术前沿丛书”之一,主要针对粉末冶金方法制备的钛合金和钛铝金属问化合物,

  • 标签: 粉末冶金 结构材料 钛合金 西北有色金属研究院 中南大学 出版社
  • 简介:采用复合包渗法在C103铌合金基体上制备硅化物涂层,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和能谱分析(EDS)等检测手段对涂层的组织结构进行观察和分析,重点采用TEM分析涂层与基体界面区的微观结构。结果表明:涂层是以MoSi2为主体层的多相复合结构;涂层与基体界面处存在NbSi2过渡层;由外向内,过渡层形貌发生明显改变,逐渐由细小等轴晶组织过渡为规整柱状晶组织。

  • 标签: 铌合金 硅化物涂层 界面结构 等轴晶 柱状晶
  • 简介:采用粉末冶金方法制备含短炭纤维的湿铜基摩擦材料,研究炭纤维含量对湿摩擦材料的摩擦磨损性能和力学性能的影响,以及制动条件对动摩擦因数的影响。结果表明:随着炭纤维含量及材料的孔隙率增加、硬度及密度均降低,摩擦因数呈先增加后减小的变化趋势,磨损量呈先减小后增大的趋势。炭纤维含量为(质量分数)1%时材料的摩擦磨损性能最好,摩擦因数最大且最稳定,磨损量最小。材料摩擦因数随着载荷增大而增大,随炭纤维含量增加磨损率呈先减小后增大的趋势。炭纤维的加入提高了材料的能量许用值。

  • 标签: 湿式铜基摩擦材料 短切炭纤维 摩擦磨损
  • 简介:采用Ag-Cu-Ti钎料连接C/C复合材料,用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)等分析连接层的微观结构与相组成,并测试连接层的剪切强度。结果表明:C/C复合材料连接层的剪切强度跟连接温度与保温时间有关;在850℃、保温30min条件下获得的连接层剪切强度最高,达到26.7MPa;同时连接层与基体材料形成机械嵌合,界面发生元素扩散和冶金反应。钎焊连接层形成固溶体和化合物,包括Ag(s.s)、Cu(s.s)、Cu4Ti3和TiC。剪切断口形貌表明钎焊层与C/C坯体之间结合较好,具有一定的连接强度。

  • 标签: 炭/炭复合材料 AgCuTi 钎焊连接 组织结构
  • 简介:对新型热电池阳极材料Li-B合金中的耐热骨架LiB化合物进行了晶体结构测定和形貌观察,获得了该化合物完整的X射线衍射谱线,经过XRD谱的衍射强度计算和电子密度函数分析,确定该化合物化学组成为LiB,属于六方晶系,空间群为No.194,晶格常数α=0.4022nm,c=0.2796nm;单中原子坐标B1(0,0,0),B2(0,0,1/2),Li1(2/3,1/3,0),Li2(1/3,2/3,1/2),理论密度d=1.50g/cm3,电子密度函数分析表明LiB化合物中Li原子的电子向B原子迁移,B原子之间有高密度电子云区,呈共价键特征,SEM观察结果表明,LiB化合物呈纤维状,合金经轧制后纤维沿轧向排列,X射线平板照相实验结果表明它具有丝织构特征,其衍射花样也与本结构模型计算结果一致。

  • 标签: LiB化合物 LI-B合金 晶体结构
  • 简介:在元素粉末反应制备多孔材料中,原料粉末粒度是影响其多孔结构的主要因素之一。本文通过元素粉末反应合成的方法制备Cu-Al多孔材料,研究原料粉末的粒径对Cu-Al多孔材料孔径、孔隙度、透气度和体积膨胀率等参数的影响。结果表明:Al粉粒径是影响Cu-Al多孔材料最大孔径的主要因素,材料的最大孔径dm与Al粉粒径dp之间严格遵循dm=0.48dp的线性变化规律;Cu粉粒径则对Cu-Al多孔材料最大孔径影响较小。当粉末粒径在48.5μm以上时,粉末粒径的改变对Cu-Al多孔材料的开孔隙度和总孔隙度影响不大。在实验研究范围内,Cu-Al多孔材料的体积膨胀率随粉末粒径的增大而增大;当粉末粒径很小时,Cu-Al多孔材料存在体积收缩的趋势。

  • 标签: 粉末粒径 CU-AL合金 多孔材料 反应合成
  • 简介:为了探索降低航空刹车用C/C复合材料成本、提高性能的有效方法,对国外炭/炭刹车材料的部分力学性能和热导率进行了测试,并利用金相显微镜对其坯体结构进行了观察分析,在此基础上,自制了一种针刺整体毡,进行CVD增密,并与炭布叠层坯体的结果对比.结果表明:国外航空刹车用C/C材料的层间剪切强度和垂直方向热导率比较高,坯体趋向于使用针剌毡;针刺整体毡由无纬布和网胎交替叠层,经针刺而成,这种结构具有孔隙分布均匀、气体扩散通道多、Z向纤维含量高的特点,为CVD增密创造了良好条件;自制针刺整体毡坯体经700hCVD增密,小样密度可达1.81g/cm3,大样密度达1.75g/cm3,且能继续增密,与炭布叠层坯体相比,采用针刺整体毡可显著缩短CVD周期.

  • 标签: 航空刹车 C/C复合材料 坯体 针刺毡 CVD
  • 简介:概述了国内外梯度硬质合金的进展,介绍了采用正碳烧结工艺来制备WC-Co梯度结构硬质合金的工艺和基本原理,列举了合金的实际应用领域,指出了该合金的应用开发前景.

  • 标签: 硬质合金 梯度结构 正碳烧结
  • 简介:结合图、表和公式综述了材料设计从宏观到微观的不同层次理论的研究现状,包括连续介质力学、结构动力学、缺陷动力学、分子动力学和量子力学等,其中,量子力学属于微观层次,分子动力学主要属于介观层次,其余属于宏观层次;进而讨论了材料设计领域的构建材料结构与性质关系、以及沟通与整合各层次理论的跨尺度关联问题。最后,介绍了现阶段材料设计的知识库和数据库技术、专家系统技术、计算机模拟技术和纯理论计算方法等4种途径。

  • 标签: 材料设计 跨尺度关联 数据库技术 计算机模拟 理论计算
  • 简介:紧耦合气雾化制粉过程中,当雾化气压超过某一临界值时,直管环缝型喷嘴的气雾化流场结构存在"开涡—闭涡"突变现象,雾化效果随之发生显著改变。该文采用数值模拟方法研究紧耦合喷嘴气体流场中开涡和闭涡结构特征及其突变行为,以及雾化介质类型和喷嘴几何结构参数(喷射顶角、导液管伸出长度和末端直径、环缝宽度)对临界雾化压力Pc的影响。结果表明:当雾化压力P略高于Pc时,马赫盘迅速截断回流区,流场结构由开涡向闭涡突变,并引起喷嘴熔体出口下方抽吸压力Pa骤降,突变前后抽吸压力差ΔPa约为30kPa;雾化介质类型和喷嘴主要几何结构参数对Pc有显著影响,但对ΔPa无明显影响。

  • 标签: 紧耦合气雾化 突变 流场结构 数值模拟
  • 简介:以炭纤维针刺整体毡为增强体,采用化学气相渗透(CVI)工艺制备出不同密度的炭/炭(C/C)多孔体,利用气压浸渍法将Cu合金渗入到C/C多孔体中制备C/C-Cu复合材料。在简支梁摆锤冲击试验机上测试C/C-Cu复合材料的冲击性能,采用金相显微镜和扫描电镜观察材料的微观结构和断口形貌。结果表明:铜合金在C/C多孔体中分布均匀;C/C-Cu复合材料垂直方向的冲击韧性优于平行方向的冲击韧性;随C/C多孔体密度的增加,材料的冲击韧性先增加后降低。C/C多孔体密度适中(1.44g/cm3)时,C/C-Cu复合材料内炭纤维、热解炭、铜合金等组分协同作用,在平行和垂直2个方向的冲击韧性都达到最大值,分别为2.68J/cm2和4.45J/cm2,具有假塑性断裂行为的特征。

  • 标签: C C-Cu复合材料 C C多孔体 微观结构 冲击性能
  • 简介:以铝热反应法制备无昂贵合金元素添加的纳米结构白口铸铁,采用XRD、OM、SEM和拉伸及压缩等分析、测试手段研究碳含量对纳米结构白口铸铁组织和力学性能的影响。结果表明:随碳含量增加,白口铸铁由不同形态的珠光体和渗碳体组成,其中层片状珠光体含量减少,粒状珠光体含量增加;层片状珠光体的片间距分别为165、231和250nm。碳含量为3.5%,3.7%和4.3%的纳米结构白口铸铁的维氏硬度分别为552、577和575HV,抗压强度为2224、2460和2220MPa,抗拉强度为383、416和245MP,均呈现先增大后减小的趋势;伸长率为3%、2.5%和1%,呈现逐渐下降的趋势。无昂贵合金元素添加的纳米结构白口铸铁的力学性能与Ni-Hard2铸铁相当。

  • 标签: 纳米结构白口铸铁 碳含量 组织 力学性能
  • 简介:热等静压(HotIsostaticPress,HIP)技术是在惰性气氛中,在各向均衡的气体高压力及高温共同作用下,去除材料内部的孔洞及缺陷,以改善机械性质、使粉末材料及表面蒸镀物具一致性、通过扩散键结(diffusionbonding)改善焊接完整性等。热等静压适用于多种材料及器件,特别是铝合金、工具钢、钛、超合金以及蒸汽涡轮零件、医学植入件、自动化铸件、靶材与粉末冶金制品等。考虑到近年来随着高密度、高传输速率光储存媒体及平面显示器的发展,靶材的研究与开发,巳成为光学薄膜制造的关键技术,该文作者以热等静压方法改善金属靶材,比较热等静压前后靶材性质差异和论证批量生产的可行性;并探讨热等静压处理对靶材性质的影响、比较其显微结构变化,以评估热等静压改善金属靶材材之可行性。研究结果显示,利用l100℃,175MPa,4h热等静压的制备流程条件,对3种不同成分配比之Cr-Si热压靶材进行热等静压处理,均可有效改善孔隙率,其中以50Cr-50Si的热等静压效果最为显著,孔隙率可有效降低60%。此外,靶材在经过热等静压后,由于炉内气体的纯化效应而使得靶材的氮、氧浓度皆有所上升,尤其是Si以单独元素形态存在时更甚,从而造成靶材纯度受到影响。

  • 标签: 热等静压 扩散键结 靶材 孔隙率
  • 简介:以ZnO粉末为原料,用N2作为载气,采用无催化辅助的热蒸发法沉积制备ZnO纳米结构,分别用X线衍射仪、扫描电镜和透射电镜对ZnO的物相、形貌和结构进行表征,并结合晶体生长理论和实验条件,对ZnO产物的形貌变化和纳米带生长方向进行研究。结果表明:离气源较近的位置到离出口较近的位置,ZnO纳米结构的形貌由连续颗粒膜逐渐向纳米带、直径大于100nm和直径小于100nm的纳米线变化。特别是发现ZnO纳米带除了常见的[001]生长方向外,还有[101]和[203]两种极为罕见的生长方向,这些纳米带都具有上下表面均由(±010)晶面组成的特点。ZnO产物的形貌变化是其生长过程由动力学控制为主转向热力学控制为主的结果,纳米带生长方向不同,可能与其晶核形成过程中的竞争生长有关。

  • 标签: ZNO 纳米结构 热蒸发沉积 纳米带 纳米线 生长方向
  • 简介:与氰化物镀Cu-Sn合金及电镀Cu-Sn合金相比,化学法制备Cu-Sn包覆层具有环境污染小,能耗低的特点。在含有硫酸铜、氯化亚锡、硫酸、表面活性剂、络合剂及稳定剂等成分的溶液中,通过置换反应在铁粉表面包覆一层Cu-Sn合金,研究包覆层的形貌和主要成分以及添加剂的适宜浓度范围。结果表明,在含有15-20g/LCuSO4.5H2O,35-40g/LSnCl2.2H2O,22-30g/LEDTANa2.2H2O,8g/L聚乙二醇,2.5g/L对苯二酚,0.3mol/LH2SO4的溶液中,获得的(Cu-Sn)/Fe复合粉末表面为金黄色,包覆层厚约2μm,Sn的质量分数为7%-8%,Cu-Sn合金均匀连续地包覆在铁粉表面。

  • 标签: 化学置换法 核?壳结构 (Cu-Sn)/Fe复合粉末
  • 简介:采用水热法制备铈稳定钪掺杂氧化锆的超细纳米晶。利用X射线衍射仪、傅里叶红外光谱仪分别研究水热产物的物相和结构,结合热重-差热分析仪分析水热反应过程物相与能量的变化,通过透射电子显微镜研究pH值对水热产物颗粒大小与聚集状态的影响。结果表明,在200℃、pH=8、反应时间为3h时,得到的水热产物为立方单相,粒径约为4nm。当pH值升高到10时,立方相的颗粒出现长大和团聚现象,平均粒径约为6nm。

  • 标签: 水热法 铈稳定钪掺杂氧化锆 纳米晶
  • 简介:分别采用超音速火焰喷涂工艺和爆炸喷涂工艺,在Q235不锈钢基体上制备Fe基非晶合金涂层,对比研究这2种非晶合金涂层在室温下的干摩擦磨损特性,并探讨摩擦磨损机理。结果表明,与超音速火焰喷涂工艺制备的Fe基非晶合金涂层相比,采用爆炸喷涂工艺制备的涂层更致密,孔隙率为2.1%,显微硬度更高,平均硬度高达1095.6HV,且耐磨性更好;并且涂层摩擦因数增至稳定值的时间较短,具有更稳定的摩擦磨损行为。超音速火焰喷涂涂层的磨损形式主要以疲劳磨损为主,而爆炸喷涂涂层的磨损形式为粘着磨损和磨粒磨损的综合作用,并以粘着磨损为主。

  • 标签: 超音速火焰喷涂 爆炸喷涂 非晶合金涂层 摩擦磨损
  • 简介:以Cu-Zr混合粉末为熔渗剂,密度为1.4g/cm3的多孔C/C复合材料为坯体,采用反应熔渗法制备C/C-ZrC-Cu复合材料,研究了复合材料的组织结构及物相组成,并对复合材料组织结构的形成机理进行了分析。结果表明:熔渗剂中Zr含量不同时,制备的复合材料均主要由C,ZrC和Cu相组成。随熔渗剂中Zr含量由50%增加到70%(质量分数),制备的复合材料中Cu含量逐渐降低,熔渗剂中Zr含量为60%时复合材料中ZrC含量最高(43.2%)。C/C复合坯体内的孔隙被反应生成的ZrC相及残余Cu相充分填充,炭纤维周围存在一层较致密的ZrC层,在远离炭纤维处,ZrC颗粒与Cu相呈混合分布状态。ZrC与C和Cu均有良好的界面结合状态,在ZrC颗粒长大和粗化过程中,形成了部分含内嵌Cu晶粒的较大ZrC颗粒。

  • 标签: C/C-ZrC-Cu复合材料 反应熔渗 组织 Cu-Zn混合粉末
  • 简介:采用非水溶液溶胶-凝胶法,并结合高温碳热还原法制备锂离子电池用高可逆容量的Sn-C复合负极材料,通过调节Sn源与炭源的比例及碳热还原过程中的升温制度来控制金属Sn的粒度和Sn-C复合材料的结构形态。借助XRD、EDS、SEM、循环伏安及恒流充放电测试对材料的物化性能进行表征。结果表明,当Sn源与C源质量比为80:20、还原温度为800℃时,纳米级金属Sn均匀紧密地分布在无定形热解炭基体中,形成良好的纳/微复合结构,此时复合材料性能相对最优;该复合材料在电流密度为100mA/g,首次可逆比容量为637.9mAh/g,循环30次后充电容量保持在372.5mAh/g以上,第二次循环库伦效率达到97%以上。

  • 标签: 锂离子电池 纳-微结构 溶胶-凝胶法 碳热还原法
  • 简介:利用分离Hopkinson压杆(splithopkinsonpressurebar,简称SHPB)技术对T6时效态2195铝锂合金帽型试样进行动态加载获得绝热剪切带(adiabaticshearband,ASB),利用透射电镜(TEM)和光学显微镜(OM)观察动态加载前后剪切带的微观结构特征,利用电子背散射衍射(EBSD)分析合金在100~400℃温度下退火后绝热剪切带微观结构的变化,研究剪切带内纳米结构的热稳定性。结果表明:在动态加载过程中,帽型试样的剪切区域形成绝热剪切带,剪切带内的晶粒为50~100nm左右的纳米等轴晶,在绝热剪切形变过程中析出相已完全溶解于基体中,纳米晶内部和晶界不存在析出相。在不同温度下退火时,剪切带内的晶粒随温度升高而长大,100~200℃温度下退火后晶粒未发生显著长大,在300℃退火后晶粒急剧长大到0.22μm,400℃退火后晶粒尺寸为1.77μm;在300℃左右温度下剪切带的硬度显著下降,此温度正是剪切带内纳米晶粒急剧长大的临界温度。

  • 标签: 2195铝锂合金 绝热剪切带 纳米结构 热稳定性