学科分类
/ 1
5 个结果
  • 简介:运用MATLAB图像处理,采用Lacey指数算法及综合分析方法作为混合评价指标,对回转滚筒内3元颗粒混合机理及混合质量进行分析,结果表明:3元颗粒混合过程中扩散混合在对流混合、对流与剪切混合共同作用、剪切混合3个阶段均起重要作用;大颗粒分布成花瓣形,花瓣形态及数量与填充率、倾角及转速均有关系;颗粒混合质量随各影响因素变化呈现出规律性变化,且与颗粒混合度所呈现的规律相异;该实验最佳工况为16.7%填充率、无倾角、3.4r/min。

  • 标签: 回转滚筒 3组元颗粒 混合机理 混合质量
  • 简介:采用气体雾化法制备Fe-12Cr-2.5W-0.4Ti-0.25(Y2O3)铁基合金粉末,分别在该粉末中添加1%Al粉和1%Fe2O3粉,在1250℃下热挤压,随后在1050℃热处理。通过X射线衍射、扫描电镜和光学显微镜等研究Al和Fe2O3对铁基合金热挤压和热处理态显微组织的影响。结果表明:与基体合金相比,Al的添加可促进铁素体基体中元素的扩散,导致晶粒尺寸增大,同时由于Fe、Al互扩散系数的差异引起柯肯达尔效应,使合金孔隙度增大;添加Fe2O3后合金的孔隙度更大,氧化物和大量残余孔隙阻碍晶粒长大,因而晶粒尺寸减小。3种合金在1050℃进行热处理时晶粒的长大规律均满足BECK方程,添加Al可提高合金的晶粒生长指数,而添加Fe2O3则相反。

  • 标签: 铁基合金 第二组元 晶粒长大 晶粒生长指数
  • 简介:以三氯甲基硅烷(CH3SiCl3)为前驱体,采用化学气相沉积法(Chemicalvapordeposition,CVD),在原位生长有碳纳米(Carbonnanotubes,CNTs)的C/C复合材料表面制备SiC涂层。用扫描电镜(SEM)和X射线能谱仪(EDS)观察和分析涂层微观形貌及成份。研究沉积温度(1000~1150℃)对SiC涂层的表面、截面以及SiC颗粒的微观形貌的影响。结果表明:在1000℃下反应时,得到晶须状SiC;沉积温度为1050℃时涂层平整、致密;沉积温度提高到1100℃时,涂层粗糙,致密度下降;1150℃下形成类似岛状组织,SiC颗粒团聚长大,涂层粗糙,并有很多裂纹和孔洞,致密度低。对涂层成份和断口形貌研究表明,基体和涂层之间有1个过渡区,SiC涂层和基体之间结合良好。

  • 标签: 炭/炭复合材料 CNT-SiC复合涂层 碳纳米管 CVD
  • 简介:采用片状粉末冶金技术制备碳纳米/铝(CNT/Al)复合材料,并研究其力学性能。首先,通过聚合物热解化学气相沉积法(PP-CVD)在微纳铝片表面原位生长碳纳米管制备CNT/Al片状复合粉末,随后对该片状复合粉末进行冷压成形、烧结致密化和挤压变形加工等,制备致密的CNT/Al复合材料块体。实验结果表明,相比铝基体,所制备的1.5%CNT/Al复合材料抗拉强度和模量分别提高了18.5%和23.7%,3.0%CNT/Al复合材料抗拉强度和模量分别提高了31.4%和74.1%,但由于铝基体的细晶强化和位错强化作用,使其塑性分别下降至4.96%和1.5%。

  • 标签: 碳纳米管 铝基复合材料 化学气相沉积 片状粉末冶金 力学性能
  • 简介:采用杂凝聚的方式制备CNTs(CNTs为碳纳米Carbonnanotubes)分散均匀的3Y-ZrO2/CNTs混合粉体,热压后得到3Y-ZrO2/CNTs复合陶瓷块体材料。与普通球磨混料法制备的陶瓷样品进行对比,研究CNTs含量以及CNTs的分散性对3Y-ZrO2/CNTs复合陶瓷的组织、密度、断裂韧性以及电学性能的影响,并分析CNTs对陶瓷的增韧机理。结果表明,采用杂凝聚处理有助于CNTs在3Y-ZrO2/CNTs复合陶瓷中的均匀分散,CNTs含量(质量分数,下同)为1.00%的3Y-ZrO2/CNTs复合陶瓷的断裂韧性达到(18.13±0.50)MPa·m1/2,较球磨混料法制备的样品提高35.10%。陶瓷基体中均匀分散的CNTs不仅通过促进马氏体相变起到增韧作用,而且CNTs的桥联和拔出机制也直接起到增韧的作用。CNTs在陶瓷基体中均匀分散能大幅降低复合陶瓷的导通阈值。经杂凝聚预处理的CNTs含量为4.00%时,3Y-ZrO2/CNTs复合陶瓷的电导率达到4.467S/m,比不含CNTs的3Y-ZrO2陶瓷高13个数量级;当CNTs含量为1.00%时,复合材料的相对介电常数达到6340,比未经杂凝处理的样品高2个数量级。

  • 标签: 碳纳米管 氧化锆陶瓷 杂凝聚 断裂韧性 电导率 介电常数