简介:Thispaperpresentsahumandetectionsysteminavision-basedhospitalsurveillanceenvironment.Thesystemiscomposedofthreesubsystems,i.e.backgroundsegmentationsubsystem(BSS),humanfeatureextractionsubsystem(HFES),andhumanrecognitionsubsystem(HRS).ThecodebookbackgroundmodelisappliedintheBSS,thehistogramoforientedgradients(HOG)featuresareusedintheHFES,andthesupportvectormachine(SVM)classificationisemployedintheHRS.Bymeansoftheintegrationofthesesubsystems,thehumandetectioninavision-basedhospitalsurveillanceenvironmentisperformed.Experimentalresultsshowthattheproposedsystemcaneffectivelydetectmostofthepeopleinhospitalsurveillancevideosequences.
简介:Traditionalbackgroundmodelmethodsoftenrequirecomplicatedcomputations,andaresensitivetoilluminationandshadow.Inthispaper,weproposeablock-basedbackgroundmodelingmethod,anduseourproposedmethodtocombinecolorandtexturecharacteristics.Suppressionandrelaxationarethetwokeystrategiestoresistilluminationchangesandshadowdisturbance.Theproposedmethodisquiteefficientandiscapableofresistingilluminationchanges.Experimentalresultsshowthatourmethodissuitableforreal-wordscenesandreal-timeapplications.
简介:Apassiveopticalnetwork(PON)monitoringsystemcombinedlightpulseandfrequencysweeptechniquesisproposedandverifiedinafieldtest.Thelightpulsesurveysovertheallwholenetworkandthefrequencysweepareusedtoinvestigateanyfaultinthelink.Thefieldtestisperformedwith4PONs.EachPONismonitoredat4ports,oneisthesplitterportandtheotherthreearearbitrarychosenmultipleopticalunits(ONUs).AllthetestedPONsaremonitoredinturnsonceperhour.Faultsatthefeederandbranchfiberhavebeenobservedinthisfieldtestandhavebeenanalyzedwiththemonitoringsystem.
简介:Movingobjectextractionandclassificationareimportantproblemsinautomatedvideosurveillancesystems.Abackgroundmodelbasedonregionsegmentationisproposed.AnadaptivesingleGaussianbackgroundmodelisusedinthestableregionwithgradualchanges,andanonparametricmodelisusedinthevariableregionwithjumpingchanges.Ageneralizedagglomerativeschemeisusedtomergethepixelsinthevariableregionandfillinthesmallinterspaces.Atwo-thresholdsequentialalgorithmicschemeisusedtogroupthebackgroundsamplesofthevariableregionintodistinctGaussiandistributionstoacceleratethekerneldensitycomputationspeedofthenonparametricmodel.Inthefeature-basedobjectclassificationphase,thesurveillancesceneisfirstpartitionedaccordingtotheroadboundariesofdifferenttrafficdirectionsandthenre-segmentedaccordingtotheirscenelocalities.Themethodimprovesthediscriminabilityofthefeaturesineachpartition.AdaBoostmethodisappliedtoevaluatetherelativeimportanceofthefeaturesineachpartitionrespectivelyanddistinguishwhetheranobjectisavehicle,asinglehuman,ahumangroup,orabike.Experimentalresultsshowthattheproposedmethodachieveshigherperformanceincomparisonwiththeexistingmethod.
简介:Anobjectmodel-basedtrackingmethodisusefulfortrackingmultipleobjects,butthemaindifficultiesaremodelingobjectsreliablyandtrackingobjectsviamodelsinsuccessiveframes.Aneffectivetrackingmethodusingtheobjectmodelsisproposedtotrackmultipleobjectsinareal-timevisualsurveillancesystem.Firstly,fordetectingobjects,anadaptivekerneldensityestimationmethodisutilized,whichusesanadaptivebandwidthandfeaturescombiningcolourandgradient.Secondly,somemodelsofobjectsarebuiltfordescribingmotion,shapeandcolourfeatures.Then,amatchingmatrixisformedtoanalyzetrackingsituations.Ifobjectsaretrackedunderocclusions,theoptimal'visual'objectisfoundtorepresenttheoccludedobject,andtheposteriorprobabilityofpixelisusedtodeterminewhichpixelisutilizedforupdatingobjectmodels.Extensiveexperimentsshowthatthismethodimprovestheaccuracyandvalidityoftrackingobjectsevenunderocclusionsandisusedinreal-timevisualsurveillancesystems.
简介:ThispaperproposedarobustmethodbasedonthedefinitionofMahalanobisdistancetotrackgroundmovingtarget.Thefeatureandthegeometryofairbornegroundmovingtargettrackingsystemsarestudiedatfirst.Basedonthisfeature,theassignmentrelationoftime-nearbytargetiscalculatedviaMahalanobisdistance,andthenthecorrespondingtransformationformulaisdeduced.Thesimulationresultsshowthecorrectnessandeffectivenessoftheproposedmethod.