简介:文章研究了利用非破坏性参量预测发电机主绝缘的剩余击穿电压,大型发电机主绝缘的非破环性参量主要有直流特征参量、交流特征参量、介质特征参量、局部放电特征参量和非电特征参量这五类。通过分析得到了介质特征量与局部放电特征量这两类参量适合预测剩余击穿电压的结论。紧接着用皮尔森积矩法作了这两类参量与剩余击穿电压的相关性分析,最终获得了四个与剩余击穿电压有较大相关性的非破坏性参量。本文筛选的网络模型经训练后取得了良好的预测效果:预测值与实际值的最大相对误差为0.93%,最小相对误差仅为0.01%。由此证明通过BP神经网络预测大型发电机主绝缘剩余击穿电压是可行的。
简介:该文设计了一种基于Blackfin的BF537数字信号处理器(DSP)的新型太阳能照明系统.它采用siemens公司的TC35i模块来实现无线通讯,采用BP神经网络在蓄电池的灌充阶段实现了太阳能最大功率点跟踪(Maximumpowerpointtracking,MPPT).为了解决神经网络不保证收敛的问题,在BP神经网络里还引入了遗传算法,得到遗传神经网络(GA-BP).最后通过系统的实现与测试,证明了算法的优越性和该系统的实用性.
简介:针对传统被动式孤岛检测法存在检测时间长、盲区(NDZ)大,而主动式孤岛检测法影响电能质量的缺点,提出一种新的基于小波包对数能量熵(WPLEE)与BP神经网络的孤岛检测方法。该方法首先采集公共耦合点(PCC)处的电压信号,再将该电压信号分别进行小波包变换,然后通过对数能量熵进行算法处理来获取适合于孤岛检测的特征向量,该特征向量通过BP神经网络进行模式识别来判断系统是否发生孤岛现象,特别在逆变器输出功率和本地负载功率匹配时。实验和仿真结果表明,该方法均能准确、有效地判断出是否存在孤岛状态,同时与传统的被动式孤岛检测方法相比检测速度快,检测盲区小,不会对电能质量产生不良影响。