简介:摘要研究了在弹性力学的三类变量广义变分原理中,变量三个变量是否独立,是否包含了应力应变关系。指出了在应用广义变分原理时应满足下列条件泛函中的应变能用应变表示、应变余能用应力表示在用广义变分原理求实际问题的近似解时。三类变量的试探函数可以独立选择,但各类变量之间应不违背力学基本关系。为了解除应力应变关系的变分约束,我们提出了一个高阶拉格朗日乘子法。用这个高阶拉氏乘子法,我们从胡鹭原理和海赖原理分别导出了前所未知的更普遍的广义变分原理。我们也证明了在这两类变分原理之间,有等价定理和相关的等价关系存在。