简介:Ю.И.Волков在[1]中构造了一系列一元及多元线性算子,其中包括二元Baskakov算子,本文讨论该算子在C空间的逼近性质。
简介:关于二元函数在一点的全微分存在的判别条件,一般教科书都是要求两个一阶偏导数在该点处连续(参见[1])。文献[2]削弱了这个条件,只要求其中一个一阶编导在该点处连续,文献[3]给出了全微分存在的另一个条件:要求两个一阶偏导数在该点的一个邻域内存在(但不要连续),及在邻域内至少存在一个有界的二阶混合偏导数。容易说明,〔2〕、〔3〕中判别条件的适用范围并不完全一样.从而〔2〕、〔3〕给出的都只是充分条件而非必要条件.讫今为止,尚未见到关于全微分存在的充分必要条件.本文将偏导数和全微分联系考虑,得到一个全微分存在的充分必要条件.作为这个充要条件的推论,可立即得出〔2〕、〔3〕中的判别条件.