简介:近年来,若干文章对“Lagrange微分中值定理的逆问题”进行了讨论,但其表述均不完整,且证明也较繁琐。本文使用严格凸(严格凹)函数的性质,给出该问题一个条件较弱且表述较完整的结果,其证明也较简洁。
简介:利用锥上的Krasnoselskii不动点定理,证明了二阶非线性具特征值问题的脉冲微分方程正解的存在性.
简介:首先用微分中值定理推出了Newton-Leibniz公式,同时也用Newton-Leibniz公式推出了三个微分中值定理,从而证明了微分中值定理与Newton-Leibniz公式可互相证明.
简介:在本文中,我们利用优级水清给出Jabotinsky方程(J2)和(J3)解析解存在的一些充分条件。