学科分类
/ 25
500 个结果
  • 简介:微分进化算法主要有三个随机参数:种群大小(NP),缩放因子(F),交叉因数(CR).这些参数的取值对EIT图像重建效果的好坏起着重要的作用.但当前微分进化算法参数选择具有随机性,大多数的参数研究是通过标准测试函数进行,没有具体到特定的领域.针对这些问题,文章以头部EIT图像重建为例,在给定目标函数和终止条件的基础上,通过大量的仿真实验,分析了各个参数对图像重构结果的影响,并给出了这些参数的合理选取区间,从而为微分进化算法在EIT图像重建中的应用提供了有效的依据.

  • 标签: 电阻抗成像 微分进化算法 有限元模型 参数设置
  • 简介:锁自行车,也爱护你——夜光条锁冬天虽冷,但在天气不错的时候骑自行车出门仍十分惬意。清冽的风吹采,总能让人清醒。不过在冬季,天黑得早,在熙攘车流中穿梭的自行车总感觉不那么安全。来自日本东京TBWA\HAKUHODO公司的设计师TakeshimaKazuyoshi和UchimaRosa设计了-一款夜光条锁(CityFirefly),或许可以帮助到你:

  • 标签: 微分 自行车 日本东京 设计师
  • 简介:

  • 标签:
  • 简介:摘要本文通过对闭环系统微分方程进行研究,求解常系数线性微分方程,验证了P、PI、PID控制是否能消除稳态误差,并指出了系统产生超调时参数的范围,对于参数的整定具有一定的指导意义。由于PID控制算法并没有严格的理论证明,在算法的学习中,容易对其消除稳态误差的原因及调节参数时产生超调的现象产生困惑,本文根据这一问题作出了研究。

  • 标签: PID 控制 常系数线性微分方程 FOPDT 模型
  • 简介:<正>什么是“微分音”?凡音程小于半音的统称“微分音”(Microtone)。一个全音分为两个音的称为半音(1/2音),一个八度共有12个音;一个全音分为四个音的称为四分音(1/4音),一个八度共有24个音;一个全音分为六个音的称为六分音(1/6音),一个八度共有36个音;一

  • 标签: 四分音 微分 全音 作品 创作 作曲家
  • 简介:微分学中值定理包括费马定理、罗尔中值定理、拉格朗日中值定理和柯西中值定理。用发现法讲授这组定理,可以使学生体验发现真理的乐趣,学习解决问题的策略。提高发现问题、分析问题、解决问题的能力。文给出了用发现法讲授微分中值定理的一种教学设计.本文给出用发现法讲授微分中值定理的另一种教学设计。

  • 标签: 讲授 教学设计 发现法 解决问题 学生体验 分析问题
  • 简介:摘 要:考虑一类一阶常微分方程---可分离变量的微分方程的求解,从实际出发,通过数学建模的方式,引导学生求解该方程,提高解决实际问题的能力,培养科研素养.

  • 标签: 微分方程 可分变量的微分方程
  • 简介:摘要:导数与偏导数,微分与全微分之间既有一定的联系,又存在一定的区别,学生在学习多元函数偏导数与全微分之前已经能够熟练掌握一元函数导数与微分的相关知识,为了能够加强学生对多元函数的学习,本文将对导数和偏导数以及微分与全微分的定义、形式及意义进行探究,将一元与多元进行类比学习。

  • 标签: 一元函数导数 多元函数偏导数 微分 全微分
  • 简介:1960年5月25日的凌晨4点多,贡布、王富洲、屈银华登上珠穆朗玛峰,创造了世界登山史上从北坡登顶的伟大壮举,他们也是中国登山家首次登顶珠峰,他们成了那个时代中国的英雄。由于那次艰难而辉煌的攀登,他们的身上都留下了程度不同的残疾。后来,

  • 标签:
  • 简介:本文介绍了微分几何研究的对象、所用工具及基本的思想方法,目的在于使函授学员对《微分几何》这门课的整体框架有一个比较清晰的认识,以便自学.

  • 标签: 曲率 挠率 内在性质 外在性质 高斯曲率
  • 简介:中值定理是数学分析中的重要定理,是沟通函数及其导数之间的桥梁。通过例题阐述中值定理在证明等式、不等式、极限和方程的根等问题的应用。

  • 标签: 微分中值定理 应用 连续 导数
  • 简介:摘要微分中值定理是微分学的理论基础,为研究函数的整体性态提供了有力的分析工具。该文较为系统地阐述了各个不同的中值定理之间的等价性,并通过丰富的例子详细介绍了中值定理在各种不同问题中的应用。

  • 标签: Rolle中值定理 Lagrange中值定理 Cauchy中值定理。
  • 简介:《微积分》课不定积分中,第一类换元法(也叫凑微分法)是常用的一种积分方法,也是一种很重要的积分方法。很多自学朋友在学习这部分内容时,往往在“凑”上感到有些困难,又因缺乏科学的指导,学习过程中走了很多弯路,既浪费了很多保贵的时间,又降低了学习兴趣。本文...

  • 标签: 凑微分法 不定积分 积分公式 被积函数 复合函数 积分方法
  • 简介:现有的插值型数值微分公式是基于n次插值多项式而建立的,借助多项式插值的迭加思想而构造的有理插值函数,从而给出的数值微分公式更灵活有效,便于实际应用,并用实例加以验证.

  • 标签: 数值微分 多项式插值 有理插值
  • 简介:用Matlab语言设计了数字微分器,为改善微分特性和减少计算工作量,采用了快速卷积算法,对实测的速度信号进行了微分处理,获得了其加速度信号。

  • 标签: 数字微分器 快速卷积算法 MATLAB语言
  • 简介:摘要:凑微分法是高等数学中一个基本并重要的知识点,本文结合具体的实例给出了求解不定积分中凑微分法的新思路——找出复合函数,找准内层函数,有助于学生更好的理解凑微分法的精髓。

  • 标签: 不定积分 复合函数 凑微分法。
  • 简介:导数和微分微分学的两个基本概念,它们既以极限概念为基础,又是极限概念的具体应导.在高等数学中的地位极为重要,在微分学中起着奠基作用.恩格斯说:“只有微分学才能使自然科学有可能用数学来不仅表明状态,并且也表明过程:运动”.那么,导数是怎样表明运动过程的?国家教委制定的《高等数学课程教学基本要求》提出要“理解导数和微分的概念”这一最高一级的教学要求,那么,如何通过教学达到这一要求?为此,必须对导数和微分概念进行剖析.理解导数概念,必须以运动的观点看问题.把导数当作《速度》来理解,普通意义下的速度v是动点所经

  • 标签: 导数概念 极限概念 高等数学课程 奠基作用 高阶导数 求导数
  • 简介:<正>中值定理是微分学的基本定理,它是沟通函数的局部性态与整体性态的桥梁,为导数应用奠定了理论基础.现行绝大多数教材,都是在证明罗尔定理的基础上,通过几何分析引入辅助函数的方法来证明拉格朗日中值定理和柯西中值定理,然而,辅助函数的引入始终是数学上的一个难点.为此,微分中值定理的证明一直受到人们的关注,我们对此也曾进行过探讨.教材中证明拉格朗日中值定理和柯西中值定理的基本思想是:

  • 标签: 微分中值定理 罗尔定理 证明方法 浅探 辅助函数 柯西中值定理