简介:将求解线性方程组的异步并行多分裂松弛迭代算法推广到线性互补问题.当问题的系数矩阵为H-矩阵类时,证明了算法的全局收敛性.
简介:建立了一个对称锥互补问题的惩罚自然剩余函数,基于一个若当代数迹不等式,在一个较弱条件下证明了其相应势函数的水平有界性.
简介:基于Chen-Harker-Kanzow-Smale光滑函数,对单调非线性互补问题NCP(f)给出了一种不可行非内点连续算法,该算法在每次迭代时只需求解一个线性等式系统,执行一次线搜索;算法在NCP(f)的解处不需要严格互补的条件下,具有全局线性收敛性和局部二次收敛性.
线性互补问题的异步并行多分裂松弛迭代算法
对称锥互补问题的一个惩罚NR函数的水平有界性
非线性互补问题的一种不可行非内点连续算法