学科分类
/ 10
196 个结果
  • 简介:设X是自反Banach空间且X和X^*均为局部一致凸空间,D是X的开、有界、凸子集,T:D→X^*是伪单调算子(pseudo-monotone),C:D→X^*是紧算子或全连续算子。利用(S+)型算子的度理论,我们建立了T+C值域性质的几个结果,这些结果对研究各类方程问题有所应用。

  • 标签: 伪单调算子 (S+)型算子 同伦 紧扰动 局部一致凸空间 值域
  • 简介:介绍了用三步迭代算法求解A-极大单调算子的不动点问题和用预解算子研究包含问题的解.同时给出了在某些条件下,三步迭代算法的收敛性.该文中的结论是在Noor,Huang的算法及RamU.Verma的背景下启发得到.

  • 标签: 非扩张映像 A-极大单调 包含问题
  • 简介:在MengerPN-空间,引入(C_0)类压缩型算子半群的有关概念.研究了两类混合单调算子新的公共不动点的存在与唯一性,不要求算子具有任何紧性、凹凸性和连续性,从而获得一些新的结论,改进和推广Banach空间中的有关研究结论.

  • 标签: 算子半群 混合单调算子
  • 简介:以广义逆为工具运用算子演算给出加权移位算子是次正常算子的条件,所用方法不同于Stampfli的工作,但结果一致.作为应用给出了两个例子.

  • 标签: 移位算子 次正常算子 亚正常算子 M-P广义逆
  • 简介:设初等算子E(X)=∑AiXBi,定义E*(X)=∑Ai*XBi*.我们证明了EE*=E*E当且仅当{Ai}和{Bi}都是交换的正规算子族,从而回答了由D.Keckic提出的关于初等算子正规性的开问题.我们还给出了E=E*的充分必要条件.

  • 标签: 初等算子 正规性 正规算子
  • 简介:针对现有灰色预测模型主要以一阶累加生成序列作为建模序列,再累减还原为原始序列预测值,本文通过Gamma函数将累加生成算子和累减生成算子拓展到正实数领域,给出分数阶累加生成算子和分数阶累减生成算子的解析表达式,一阶和整数阶均是其特例,证明了两算子之间的互逆性.为建立分数阶灰色预测模型和拓宽灰色预测模型的应用范围提供理论基础.

  • 标签: 灰色系统理论 分数阶 累加生成算子 累减生成算子
  • 简介:设M^2n+1(K)是2n+1维常ψ—截面曲率K的紧致Sasaki流形,本文证明了与M^2n+1(K)等谱的上同调Einstein的紧致Sasaki流形必有常ψ-截面曲率K.

  • 标签: 流形 截面曲率 LAPLACE算子 上同调 证明
  • 简介:设iAj(1≤j≤)是有界C0群的可交换生成元,P(A)=∑|μ|≤2aμAμ(Aμ=A1μ…Anμn)如果P是弱椭圆的且其实部是上有界的,则我们证明P(A)生成一个C0半群.

  • 标签: C0半群 弱椭圆算子 泛函演算
  • 简介:设g1.g2为正规函数.对所有的0〈p.q〈∞,我们得到了Bergma型空间的加权Cesaro算子Tψ:Ag1^p→Ag2^q为有界算子和紧算子的充要条件.

  • 标签: 有界性 紧性 CESÀRO算子 Bergman型空间
  • 简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.

  • 标签: 参数连续MARKOV链 转移函数 Markov积分算子半群 压缩C0半群 增加积分算子半群 预解正算子
  • 简介:用K—Carleson测度刻画了B^α(B0^α)到QK的复合算子的有界性,以及B^α到QK,0的复合算子的有界性和紧性.

  • 标签: QK空间 K—Carleson测度 复合算子