简介:传统针对文本数据的分析,往往基于词频、词频逆文本统计量作为文本的表示特征.这类方法往往只反映了文本的部分信息,忽略了文本的内在语义特征.本文研究了中文词语衔接的概率语言模型,其基本思想在于根据文本中词语出现的先后顺序进行建模分析,该模型在短文本数据挖掘中能够很好地针对文本语义进行量化分析.主要解决两类问题:一、如何合理地将中文词转化为数字向量,并且保证中文近义词在数字空间特征上的相似性;二、如何建立恰当的向量空间,将中文文本的语义和结构特征等信息保留在向量空间中.最后结合某城市房屋管理部门留言板的实际留言文本数据,利用BP神经网络和RNN网络两种算法,实现概率语言模型的求解.与传统文本处理方法的对比说明,本文的模型方法针对短文本语义挖掘问题具有一定的优势性.
简介:在介绍B.VANROOTSELAAR的解方程组x′=Ax的一种新方法的基础上,对矩阵F(0)求法作了补充,对照以往通常的解法,分析了它的优越性.文章用完全开放性的Maple语言程序在计算机上实现了这种方法的应用,并通过生动的例子说明了同样是借助计算机强大的计算功能,新的解法在速度上要提高上百倍,更有实用价值.