简介:本文刻划交换半群的强半格上的最小半格同余,并证明由此得到的商半群为对应的每个交换半群的商半群的强半格。
简介:主要讨论由Lipschitz函数b与广义C-Z算子T生成的交换子[b,T]在加权Herz型Hardy空间上的有界性,证明了[6,T]从HKq1^α,p(w1,w2^q1)到HKq2^α,p(w1,w2^q2)的有界性.
简介:设函数b=(b1,b2,…,bm)和广义分数次积分L-a/2(0〈α〈n),它们生成多线性算子定义如下Lb-a/2f=[bm…,[b2[b1,L-a/2]],…,]f,其中m∈Z+,bi∈Lipβi(0〈βi〈1),其中(1≤i≤m).将讨论Lb-1a/2。从Mp^q(Rn)到Lip(α+β-n/q)(Rn)和q^q(Rn)到BMO(Rn)的有界性.
简介:研究了由强奇异Calderón-Zygmund算子T和加权BMO(ω)函数b生成的交换子Tb的sharp极大函数的点态估计,证明了这类交换子是由L^[p](μ)到LP(μ)到LP(υ)上的有界算子,其中ω=(μυ^[-1])^[1/P]且μυ∈Ap,1〈P〈∞.
简介:本文中,我们将一些作者的相关结论推广到加权空间,并且获得了由Bochner-Riesz算子生成的极大交换子在加权Herz-Hardy空间和加权Hardy空间的有界性,其中ω∈A_1.
简介:研究Calderon-Zygmund奇异积分算子与BMO函数生成的多线性交换子,建立了其在加权Morrey-Herz型空间的有界性.