学科分类
/ 23
446 个结果
  • 简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。

  • 标签: 细胞神经网络 LYAPUNOV函数 时滞 渐近稳定性
  • 简介:研究具有时滞的细胞神经网络的稳定性问题,通过构造合适的Lyapunov函数及不等式分析技巧,给出了时滞细胞神经网络全局稳定的新的充分判据,这些结论推广了已知文献中的结果。

  • 标签: 细胞神经网络 Lyapunm 函数 时滞 全局渐近稳定性
  • 简介:本文采用Lyapunov-Krasovskii泛函方法对一类变时滞细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。

  • 标签: 变时滞 LYAPUNOV方法 神经网络 稳定性
  • 简介:本文在L^1空间上,研究一类具积分边界条件种群细胞迁移方程,利用泛函分析中构造算子和比较算子方法及相关半群知识证明了迁移算子A_H产生的G_0半群V_H(t)的Dyson-Phillips展开式的n阶余项R_n(t)(n≥1)的弱紧及V_H(t)和U_H(t)(streaming算子B_H产生)具有相同的本质谱及一致的本质谱型,得到了在区域Г中迁移算子A_H仅由有限个具有限代数重数的离散本征值组成及迁移方程解的渐近稳定性.

  • 标签: 积分边界条件 种群细胞 本质谱 半群
  • 简介:研究了具时变时滞的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.

  • 标签: 分层抑制细胞神经网络 概周期解 时变时滞
  • 简介:线性矩阵不等式的优良性质可用于解决细胞神经网络中的保性能控制问题.本文介绍了线性矩阵不等式的相关概念和性质;通过对Schur补引理的改进提出了一个引理,从而更容易将二次矩阵不等式转化为线性矩阵不等式,更好地应用于控制参数求解;提出了LMI的基本问题和MATLAB工具箱,并对LMI在细胞神经网络的保性能控制问题作出了简要描述.

  • 标签: 线性矩阵不等式(LMI) SCHUR补 细胞神经网络(CNNs) 保性能
  • 简介:在中职数学教学中经常会遇到这样的现象:有些学生竭尽全力也难有所成,尝尽失败的痛苦后,恨自己不成器,认为前途一片黑暗,于是缺乏前进的动力,陷人自暴自弃的消极态度.这种消极心理体验在心理学中被称作“习得无助”,它不仅会影响学生的数学学习,也会影响学生的其他方面,甚至是身心健康.

  • 标签: 数学教学 心理体验 数学学习 身心健康 学生 心理学
  • 简介:在时间尺度上,通过使用线性动力方程的指数二分法、不动点理论和微积分理论,研究带有泄漏项的中立型时滞细胞神经网络模型,获得了一些使其概周期解存在和全局指数稳定的充分条件,并将以前的结论在时间尺度上做了扩展.

  • 标签: 时间尺度 细胞神经网络 概周期解 指数稳定 中立型
  • 简介:通过使用叠合度理论、M-矩阵、李雅谱诺夫函数和不等式技巧等,在时间尺度上研究带有狄利克雷边值和反应扩散项的非自治模糊细胞神经网络的全局指数稳定性,并获得一些使其存在全局指数稳定的平衡点的充分条件.最后,给出一个例子去验证结论的有效

  • 标签: 全局指数稳定 模糊细胞神经网络 狄利克雷边值 时间尺度 反应扩散
  • 简介:提高数学复习与训练的针对、有效成都七中王希平每年进行的高考数学复习,都要进行大量的训练、练习,每年高考后认真反思一下,就会发现所做大量练习中有不少是作了“无用功”。这种训练的盲目实际上是一种浪费。在复习中如何把握好《数学科考试说明》,提高复习的...

  • 标签: 数学复习 高考试题 高考复习 数学归纳法 解答题 选择题
  • 简介:论述了分段函数在数学分析中的作用,并以分段函数为工具,给出了函数的原函数存在和黎曼可积之间的关系,有助于全面掌握原函数和定积分这两个重要概念.

  • 标签: 分段函数 可积性 原函数 间断点
  • 简介:研究了随机环境中马氏链的周期,引入了随机环境中马氏链的正常返和零常返,利用状态的周期讨论了随机环境中马氏链的正常返,给出了状态正常返的若干充分条件,从而推广了经典马氏链的相应结论.

  • 标签: 随机环境中的马氏链 周期 强常返 正常返 可达
  • 简介:设初等算子E(X)=∑AiXBi,定义E*(X)=∑Ai*XBi*.我们证明了EE*=E*E当且仅当{Ai}和{Bi}都是交换的正规算子族,从而回答了由D.Keckic提出的关于初等算子正规的开问题.我们还给出了E=E*的充分必要条件.

  • 标签: 初等算子 正规性 正规算子
  • 简介:证明了夹住椭圆薄膜的整个边界不是使薄膜的椭圆成立的必要条件.特别地,给出了两类边界条件.分别叫做部分自由边界条件和共轭边界条件,它们使得椭圆薄膜具有椭圆但其边界没有被完全夹住.这些结果纠正了Slicaru在下面的文章中所犯的错误:Ontheellipticityofthemiddlesurfaceofashell,C.R.Acad.Sci.Paris,t.322.Serie,p.97-100.1996.最后,通过例子说明,当椭圆薄膜的边界不限制任何条件时,使应变能有限的位移向量空间可非常大.

  • 标签: 薄膜 椭圆性 Bochner技巧