学科分类
/ 2
33 个结果
  • 简介:<正>第1课四形(一)一、自学范围(P121-P124)二、学习准备1.观察教材P121所给图形,请把你知道的长方形、正方形、平行四形、梯形找到并勾画出来。二.上述图形都有它们共同的特点:,由四条线段组成,这类图形叫做

  • 标签: 四边形的内角和 平行四边形 正方形 对角线 中心对称 变式题
  • 简介:理解并掌握多边形的内角和、外角和定理及四形和多边形的有关概念;掌握平行四形、矩形、菱形、正方形的概念、性质和判定,以及它们相互关系与区别,会用它们进行有关的论证和计算;理解梯形的有关概念,掌握等腰梯形的性质和判定;掌握平行线等分线段定理及其推论,掌握三角形和梯形的中位线定理,并会运用它们进行有关论证和计算;

  • 标签: 四边形 中考 数学 专题复习 复习目标 平面几何
  • 简介:<正>一、填空题:(每小题3分,共30分)1.对角线__的平行四形是菱形。2.已知一个多边形的内角和等于它的外角和,那么这个多边形有__条。3.顺次连结任意四形的四中点所构成的四形是__四形。4.平行四形是中心对称图形,它的对称中心是__。

  • 标签: 目标检测 任意四边形 平行四边形 轴对称图形 直角梯形 对称中心
  • 简介:研究了若干科类的邻强染色。利用在图中添加辅助点和的方法,2构造性的证明于对于完全图Kn和路Lm的笛卡尔积图Kn×Lm,有xas'(KR×KTR)=△(Kn×Lm)+1,其中△(K×Lm)和X'as(Kn×Lm)分别表示图Kr×Lm的最大度和邻强色数。同理验证了n阶完全图Ks的广义图K(n,m)满足邻强染色猜想。

  • 标签: 完全图 广义图 笛卡尔积图 邻强边染色 邻强边色数
  • 简介:形单元检测题(45分钟完卷,满分100分)一.填空题(共25分)1.平等四形的一个内角为150,周长是30cm,面积28cm2,则两邻边的长分别是,.2.E、F、G、H分别是矩形ABCD各中点,若AB=8cm,SEFGH=12cm2,则SA...

  • 标签: 四边形单元 对角线 平行四边形 正方形 等腰梯形 等腰三角形
  • 简介:著名数学教育家波利亚在《怎样解题》一书中指出:数学问题解决的过程必须经过下列四个步骤,即理解问题、明确任务;拟定求解计划;实现求解计划;检验和回顾.据此,有效的数学解题教学也应该让学生亲身经历上述四个解题步骤.但在日常数学教学中,却往往会忽略其中某些步骤.

  • 标签: 数学解题教学 低效 数学问题解决 数学教育家 数学教学 解题步骤
  • 简介:形的教法与学法第1课梯形(一)一.教学目标:识记梯形及其有关概念,掌握梯形性质定理,渗透转化思想,培养论证能力。二.学法指导:(阅读教材P169-P172)1.细读教材P169识记梯形定义:一组对边,另一组对边的四形叫做梯形,其中平行的两叫做...

  • 标签: 三角形中位线 平行四边形 等腰梯形 辅助线 对角线 变式题
  • 简介:近日,由吴江高级中学和吴江盛泽中学合办的“学习力生长:构建高中‘生动课堂’教学新样态”课堂教学主题研讨活动在吴江高级中学举行.笔者有幸到现场学习提升,聆听了江苏省特级教师孙四周老师开设的《数列的综合应用》,感触颇深,思良久,书此文.

  • 标签: 课堂教学 应用 数列 浸润 素养 碰撞
  • 简介:本文主要通过研究一些例题,采用化归法,巧妙运用斐波那契数列的特征,来解决一些数学问题.通过化归,将问题的无关因素去掉,因而将问题的本质特征暴露出来,让读者能够透过表面现象,发现问题的本质特征,从而达到解决问题的目的.

  • 标签: 斐波那契数列 数学问题 表面现象 化归法 特征
  • 简介:一个图G的无圈染色是一个止常的染色使得其不产生双色圈.Alon,Sudakov和Zaks(2001)猜想:每一个简单图G是无到(△(G)+2)-可染的,其中△(G)是G的最大度.本文对2-外平面图族证明了该猜想成立.

  • 标签: 无圈边色数 2-外平面图 最大度
  • 简介:如果图G有一个生成子图使得这个生成子图的每一个分支都是3个点的路,则称G有P3-因子.本文证明了对任何一个2-连通图G,只要G的数能被3整除,则G的线图就有P3-因子。

  • 标签: P3-因子 线图
  • 简介:有关凸四形的一个性质重庆市南岸区四公里小学胡波我们知道,两条相互垂直的直线将长方形分成四个小长方形(如图1),其面积分别为S1,S2,S3,S4,则有S1×S4=S2×S3。S1S2S3S4图1若将两条互相垂直的直线改成对角线,长方形就分成了四个面...

  • 标签: 凸四边形 色三角形 三角形面积 阴影部分 长方形 面积分