学科分类
/ 3
47 个结果
  • 简介:基于贝叶斯方法,提出了一个失事飞机的发现概率模型,利用飞机失联前后的信息数据,给出了目标搜索区域的确定方法以及失事飞机在目标搜索区域的初始概率分布,得到发现概率的计算公式。以发现概率为目标,构造了一个求解最优搜寻策略的Max-Max化规划模型,模型可以动态地对坠机点的概率分布进行更新,使下一步搜寻任务得到及时的修正和调整。考虑到洋流对坠机点的影响,本文还提出了一个关于基点先验概率分布的重构策略。此外,对任务搜索区域最优路径的选取问题做了进一步探讨,给出了一个任务搜索区域上搜寻路径的选取方法。

  • 标签: 贝叶斯更新 发现概率 基点 目标搜索区域 任务搜索区域
  • 简介:本文利用马氏骨架过程理论讨论了冷贮备可修系统的可靠性.该模型由两个不同型部件,一个修理工组成,部件的寿命和修理时间均服从一般分布.

  • 标签: 冷贮备系统 马尔可夫骨架过程 可靠性 修理
  • 简介:从附加结构的角度将流形的多种概念有机地串联起来,并给出了一种直观理解流形、微分流形等抽象概念的新颖方式.同时,本文阐述了微分几何的主要特点、思想,介绍了与附加结构相关的流形分类问题、Poincare猜测等的研究情况.

  • 标签: 微分几何 流形 附加结构 POINCARE猜想 RICCI流
  • 简介:《2008年江苏省高考数学学科考试说明》增加了对算法初步的考查,循环结构作为算法的一种基本结构,应用广、题型灵活、易出错,下面就针对本部分常见的易错点进行总结,希望能对算法复习产生启发.

  • 标签: 循环结构 错题 数学学科 算法 江苏省 本结构
  • 简介:本文从理论上讨论了多种产品的线性盈亏决策及联产品的生产决策问题,给出了利润与多种产品销售总额之间关系的公式,给出了使产品结构优化的较简便的操作方法。

  • 标签: 最大边际贡献 最大边际贡献率 联产品
  • 简介:一、财务控制与治理结构:部分与整体的关系现代理论认为,公司是由一系列利益相关者组成的一个契约联合体。这些利益相关者包括股东、债权人、经营者、职工、顾客、供应商、政府等等。而公司治理结构就是用来协调他们之间的利益关系,以保证公司决策的科学化,从而维护各方面利益的一整套正式或非正式的、内部或外部的制度。公司治理结构的功能是配置相关者的权、责、利,这个“权”指的是剩余控制权,即对法律或合同未作规定的资产使用方式作出决策的权利,它决定着剩余收益权,是公司治理的基础。而公司控制权的核心是财务控制权,因为公司财务是对生产经营活动的综合反映,是各方面利益的焦点所在。公司的

  • 标签: 财务控制系统 公司治理结构 治理结构模式 公司治理模式 经营者财务 出资者财务
  • 简介:以蛛网捕丝与放射丝结点为研究对象,首先应用达朗贝尔原理对结点进行受力分析,运用动力松弛法将猎物作用于结点的动态力变为静力建模;然后考虑不同捕食策略对蛛网结构的影响,将捕食策略变为约束条件,蛛丝上的最小残余力作为优化目标,建立基于捕食策略的单目标规划模型;最后提出将环境影响因子转化为目标函数的约束条件的模型改进方法。

  • 标签: 皮芯层结构 功能反应 寻找效应 动力松弛法
  • 简介:设G是一个有限的简单连通图.D(G)表示V(G)的一个子集,它的每一个点至少有一个最大匹配不覆盖它.A(G)表示V(G)-D(G)的一个子集,它的每一个点至少和D(G)的一个点相邻.最后设C(G)=V(G)-A(G)-D(G).在这篇文章中,下面的被获得.(1)设u∈V(G).若n≥1和G是n-可扩的,则(a)C(G-u)=和A(G-u)∪{u}是一个独立集,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配,并且它匹配A(G-u)∪{u}的所有点与D(G-u)的不同分支的点.(2)若G是2-可扩的,则对于u∈V(G),A(G-u)∪{u}是G的一个最大障碍且G的最大障碍的个数是2或者是|V(G)|.(3)设X=Cay(Q,S),则对于u∈Q,(a)A(X-u)==C(G-u)和X-u是一个因子临界图,或者(b)C(X-u)=和X的两部是A(X-u)∪{u}和D(X-u)且|A(X-u)∪{u}|=|D(X-u)|.(4)设X=Cay(Q,S),则对于u∈Q,A(X-u)∪{u}是X的一个最大障碍且X的最大障碍的个数是2或者是|Q|.更多还原

  • 标签: 匹配 n-可扩 障碍 CAYLEY图
  • 简介:考虑了以数理逻辑中的等值演算为工具对一个结构较为复杂的定理的逻辑结构做了分析.这为我们常用的分析命题结构的方法如逆否命题等提供了一个新思路.

  • 标签: 命题 逻辑结构 等值演算 线性关系
  • 简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构

  • 标签: 凸性 正规结构 一致正规结构 超积空间 BANACH空间 对径点
  • 简介:设(E,S,Ω,f)是随机结构空间,当(E,S,Ω,f)是随机度量空间,随机赋范空间,随机内积空间时,其向量的随机度量,随机范数,随机内积是随机变量.证明了它们的数学期望分别是拟度量,拟范数,内积.应用关于数学期望的结果,进而得到了随机Hilbert空间中线性连续泛函的Riesz表示定理.

  • 标签: 随机度量 随机内积 随机变量 数学期望 表示定理 随机拓扑空间
  • 简介:研究了一类具有阶段结构的SIR传染病模型,在模型中假设种群分幼年和成年两个阶段,且只有成年种群染病,并且采用与成年易感者数量有关的一般非线性传染率,得到了系统解的有界性及无病平衡点和地方病平衡点存在的条件.通过对平衡点对应的特征方程的讨论得到了平衡点局部渐近稳定的条件,同时证明了平衡点的全局渐近稳定性,并对结论进行了数值模拟.

  • 标签: 阶段结构 SIR传染病模型 平衡点 稳定性
  • 简介:在本文中我们给出Hesenberg矩阵的行列式的—公式,它与计算六角系统的Kekule结构密切相关.更多还原

  • 标签: 六角系统 Kekule结构 Hesenberg矩阵
  • 简介:考虑树状结构的弹性振动弦网络系统.运用频域上的能量乘子法证明了当根部固定时,其余节点的线性反馈控制可使得系统能量指数衰减且谱确定增长条件成立.

  • 标签: 弦方程 边界控制 稳定性 谱确定增长条件