学科分类
/ 1
2 个结果
  • 简介:小型移动机器人在未知环境下运行,陀螺所受噪声干扰无法建立有效的数学模型,需要仅从观测信号中把噪声去除,并估计出原始信号,根据该特点提出一种微机电陀螺信号盲均衡迭代卷积算法。该算法利用横向滤波器对陀螺信号进行卷积运算,使用贝叶斯方法对信号进行估计,建立了误差函数并与LMS算法组合,实现了均衡器参数的自动调整,在小型移动机器人上进行了算法实验验证。实验结果表明,该算法可以有效分离角速度信号与噪声信号,其噪声信号幅值减小约10倍,移动机器人运行275.41s抵达终点的偏航角误差从13°下降到1.46°。

  • 标签: 移动机器人 MEMS陀螺 盲均衡 反卷积 滤波器
  • 简介:开展了机器学习在翼型气动力计算和设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.

  • 标签: 神经网络 气动力 翼型反设计 PARSEC参数法 计算流体力学