简介:基于计步的传统航位推算的手机导航方法要求手机保持相对人体固定位置以保证航向的准确性,该要求严重影响了用户体验。针对行人的手机姿态改变和高精度定位的行人导航需求,提出了一种重力辅助和模拟零速修正的航向补偿方法。手机姿态发生改变时候的航向角度补偿可以采用手机重力计输出数据进行辅助判断;通常脚部捆绑式惯性导航定位中采用的航位推算技术无法应用于行人手持的手机,所以不具备零速修正算法的基本条件,为此提出了一种应用于行人手持手机的模拟零速修正算法,通过检测行人步态,采用卡尔曼滤波有效抑制了手机的航向发散。行人的综合行走实验结果表明,基于重力辅助和模拟零速修正的手机航向修正方法,能够自主判断并补偿由于手机使用方式改变造成的航向误差,在行走196m距离的情况下,行走误差仅有1.2%,有效提高了行人定位精度。
简介:为提高车载捷联惯性导航系统(SINS)的定位和姿态精度,分析了SINS静态罗经对准原理,并推广至行进过程中,借助里程仪测速辅助实现姿态动态、持续对准。同时,通过此动态罗经回路控制律对里程仪测速噪声进行平滑,并对平滑后速度加以检测,实现了零速修正(ZVU)的停车自动识别;停车瞬间利用动态罗经对准回路对系统姿态进行修正,速度误差归零,并依据相邻停车时刻记录的速度误差拟合曲线积分值修正系统位置误差。最后,采用此方案进行了长达4h(约160km)的三组跑车实验,每10min停车ZVU(1s),达到的定位精度为44.2m(CEP),姿态精度优于0.5’。
简介:为了确保静电加速度计长期在轨工作,结合非线性Batch估计算法,研究了静电加速度计标度因数和零偏误差标定。首先,充分考虑静电加速度计量测过程中可能出现的各种误差源并进行分析,建立了静电加速度计在动态设计良好并进入稳态后,卫星姿态稳定度优于0.01°/s,卫星质心保持精度优于2mm的情况下的量测模型。然后,将高精度地球引力场模型和静电加速度计量测数据代入非线性Batch估计算法的的动力学方程中,将GPS量测数据代入非线性Batch估计算法的量测方程中,建立了静电加速度计标定因数和零偏误差标定模型。最后,通过数学仿真验证了该方法的可行性,其标定精度可达到0.2%,具有一定工程应用参考价值。
简介:文章详细讨论了两类非对称涡流动诱发的模型摇滚运动.第1类是针对旋成体机身组合体模型,其摇滚运动是由前体非对称涡流动诱发的,运功形态呈现不确定性,由模型头尖部的扰动触发形成.文章提出了快速旋转头尖部扰动的控制技术,以抑制该类模型的大攻角摇滚运动.第2类是针对非常规机身的组合体模型,其摇滚运动的主控流动是非常规机身和机翼的前缘分离涡流动,这些流动是由组合体模型的边界条件确定的,从而运动形态具有很好的确定性.所以,这类模型的自由摇滚运动必须通过改变边界条件来改变诱发摇滚运动的流动,以达到抑制模型自由摇滚运动的目的.最后,文章还讨论了这类运动是由非对称的机翼涡涡强主控的.
简介:预测类Apollo返回舱外形在高焓来流下的气动热特性,研究网格Reynolds数、壁面温度、多种化学反应模型以及限制器对预测热流的影响.采用ESI-CFD-FASTRAN软件作为数值模拟平台,使用基于温度梯度及分子扩散效应的热流模型;空间离散采用Roe-FDS格式,时间推进采用点隐式;采用等温壁面条件.数值计算表明:(1)热流在返回舱头部驻点处达到一个极值,沿着壁面热流不断下降,经过返回舱肩部热流有突越上升;(2)满足网格Reynolds数小于10的网格获得的热流较为准确;(3)使用Gupta模型计算得到的热流与Park85模型得到的类似,但是获得的热流分布类似;(4)采用湍流模型获得的头部肩部热流结果与层流结果相同;(5)二阶min-mod限制器实现了高阶格式,其计算得到的热流结果在肩部略高,但是整体分布略低于不带限制器的格式.因此,在计算中采用满足网格Reynolds数壁面网格,采用带限制器的高阶格式计算获得的热流分布更加准确;由于头部热流主要贡献并非来源于湍流,因此对于肩部热流采用层流模型足够准确.
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:针对车载单轴旋转激光捷联惯导系统,提出一种抗晃动初始对准方法和零速修正方法,以满足载车快速启动和精确定位的要求。首先采用基于重力信息的粗对准方法得到初始姿态,然后在此基础上,采用惯性凝固坐标系下速度为观测量的卡尔曼滤波方法完成晃动基座精对准。初始对准完成后,采用当地地理坐标系下速度为观测量的卡尔曼滤波方法进行零速修正。数字仿真试验及跑车试验结果表明:在晃动基座上经5min快速初始对准航向角精度与传统方法相当,对准时间仅为传统方法50%;零速修正时间间隔20min,停车修正5s,跑车2h水平定位精度与高程精度相对传统方法提高40%以上。数字仿真试验和系统跑车试验结果验证了所提出算法的可行性和有效性。