简介:受欺骗的卫星导航信息与惯导系统组合滤波,会导致错误的惯性器件误差修正量,最终组合导航系统也会被欺骗干扰影响。针对这一问题,提出了一种基于MEDLL算法的改进的GNSS/INS组合导航模式,能够实现欺骗信号的辨识和抑制,保证组合导航信息的可靠性。GNSS接收机通过MEDLL算法同时估计接收的全部卫星信号参数,当欺骗干扰存在时,MEDLL算法可同时估计出两路信号参数,并判定欺骗干扰存在;MEDLL估计的信号参数生成两组输出伪距信息与惯导系统定位信息提供的参考伪距进行比较,实现欺骗信号的辨识。在200次实验测试中,对于牵引速率大于2m/s的牵引式欺骗信号,4s内成功辨识的次数为200次。同时,与传统的GNSS/INS组合导航系统相比,提出的MEDLL辅助的组合导航模式能够有效减小欺骗信号的影响,定位结果稳定在真实位置附近。
简介:行进间对准技术能够使惯导在运动状态下完成系统初始化,它对于提高载体机动能力具有重要作用。与静基座对准不同,行进间对准通常需要利用外部设备(在陆用导航领域,通常使用GPS或里程计)提供载体运动信息对惯性导航系统输出进行补偿和修正。由于里程计辅助的行进间对准具有全自主的特点,因而被广泛采用。本文通过对里程计误差进行合理建模,并采用位移增量匹配方法实现了里程计和惯导系统的组合。同时,针对复杂路面环境下由于车体侧滑、空转等造成里程计测量失准等故障现象进行有效诊断,以此提高了组合导航系统的可靠性。通过行进间对准试验,结果表明由里程计辅助的惯导系统经过10min初始对准,航向误差小于0.05°,精度和静基座相当。
简介:大视角图像匹配算法的鲁棒性与实时性直接影响飞行器对远距离目标定位的性能。针对目前仿射不变图像匹配算法实时性较差的问题,提出一种惯性信息辅助的快速大视角图像匹配方法。该方法对现有的快速图像匹配算法进行改进,避免了构建高斯金字塔,提高了算法效率。然后利用机载惯性导航信息求解实时图与参考图之间的单应性矩阵,并对实时图进行模拟视角变换以此减小图像间视角差异,克服了现有的大视角图像匹配算法盲目多次的匹配计算,实现了大视角图像的快速匹配。实验结果表明,惯性信息辅助的大视角图像匹配算法与现有的快速仿射不变性匹配算法相比,匹配效率提高了至少2倍。
简介:地形辅助导航是一种利用地形高度信息定位的导航技术,由于地形高度起伏是非线性的,因此地形辅助导航本质是非线性、非高斯贝叶斯后验概率估计问题。粒子滤波因为适合非线性、非高斯估计问题,被引入地形辅助导航领域得到广泛研究和应用,但粒子滤波算法存在粒子匮乏的问题,会影响定位精度。针对此问题,将高斯混合无迹粒子滤波(GMUPF)用于地形辅助导航,该算法用高斯混合模型(GMM)近似粒子分布,用无迹卡尔曼滤波(UKF)估计重要密度函数,不需要做重采样。通过用实际地形数据做飞行仿真实验,结果显示相比粒子滤波,不仅没有粒子匮乏问题,而且所用粒子数更少时估计精度略好。
简介:惯导固有原因使得载体长时间航行累积大量误差.可通过重力梯度量测与惯导组合导航方法来修正导航误差.先对重力梯度仪与惯导组合导航原理进行阐述,提出重力梯度仪辅助INS(GAINS)的系统框架图,对导航用重力梯度图和重力梯度仪进行分析,设定组合量测方程.然后根据状态空间方程的特点,提出使用边缘Cubature粒子滤波(CPF)进行融合估值.通过理论方法证明其对方差的减小,同时给出算法流程.相同条件下与已有APO-PF算法仿真进行经纬度RMSE结果对比,表明该算法估值精度更高;并用CEP对导航误差研究,得到在性能较低的惯导条件下、在梯度仪1E2和10E2噪声下4h的CEP数值分别为0.044nmile和0.072nmile的结果.最后对状态方程简化,定性分析出其余状态量的估值效果.
简介:由于GPS和无线电信号在水下衰减很快而无法使用,因此以惯性导航为核心,加以其它声学辅助导航设备的组合导航系统正适合水下航行器的使用环境。以捷联惯性系统/超短基线/多普勒测速仪/磁航向仪组合导航系统为研究对象,给出了联邦滤波结构,并利用X^2残差检测法诊断出子系统的故障并进行系统重构从而不影响系统性能,最后对组合系统进行了仿真,成功检测出了超短基线系统定位故障并及时进行了隔离。姿态误差和速度误差在故障发生和消失时刻由于系统重构有轻微跳动,其它时刻均保持较高精度,当故障消失时位置误差又恢复到正常量级(5~10m)。仿真结果表明,所提出的SINS/水下声学辅助设备组合导航系统能够提供水下航行器精确的速度、姿态及位置信息,并能够正确及时检测并隔离故障。
简介:基于计步的传统航位推算的手机导航方法要求手机保持相对人体固定位置以保证航向的准确性,该要求严重影响了用户体验。针对行人的手机姿态改变和高精度定位的行人导航需求,提出了一种重力辅助和模拟零速修正的航向补偿方法。手机姿态发生改变时候的航向角度补偿可以采用手机重力计输出数据进行辅助判断;通常脚部捆绑式惯性导航定位中采用的航位推算技术无法应用于行人手持的手机,所以不具备零速修正算法的基本条件,为此提出了一种应用于行人手持手机的模拟零速修正算法,通过检测行人步态,采用卡尔曼滤波有效抑制了手机的航向发散。行人的综合行走实验结果表明,基于重力辅助和模拟零速修正的手机航向修正方法,能够自主判断并补偿由于手机使用方式改变造成的航向误差,在行走196m距离的情况下,行走误差仅有1.2%,有效提高了行人定位精度。
简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。