简介:描述了一种采用HPGe探测器γ能谱法无损测量核材料铀样品并计算样品的生产(纯化)年龄与同位素丰度的方法。该方法不需要其他任何标准源或参考源,对样品的形态(固体、液体)和形状没有限制,由铀样品自身所含多γ射线核素的γ能峰来刻度相对峰效率曲线,由能峰计数率、相对效率、γ射线发射概率等参数确定铀同位素的比值,由^234U与其衰变子体214Bi的活度比值计算其生产年龄。对一个铀总量约5g、^235U浓缩度约90%的24mL液体铀样品,用两套HPGe探测器分别测量不同能区范围的γ能谱:在平面型探测系统获取的低能区能谱中,用^235U的γ能峰刻度相对峰效率曲线,计算了^234U、^228Th(232U子体)与235U的相对比值;在同轴型探测系统获取的高能区能谱中,用^228Th及其子体的γ能峰刻度相对峰效率曲线,计算^238U、^214Bi与^228Th的相对比值,综合计算得到铀样品生产年龄(-32a)及铀同位素丰度,并与样品经过放化分离后,质谱法测量得到的结果进行了比较,生产年龄与丰度比偏差均在5%以内符合。
简介:在激光脉宽的时间尺度内,非平衡是激光靶耦合物理的重要特征。为了深入地研究激光靶耦合产生的等离子体状态以及辐射场的时空特性,考察“三温”模型的适用性,发展了新版的一维平板非平衡辐射流体力学程序RDMG,程序中用多群辐射输运方程描述辐射场的演化,增加了激光加源,在非平衡区求解非平衡电子占据概率方程,在线计算非平衡的辐射发射和吸收系数,其中平均原子模型可以考虑到角量子数层次。下面介绍一个典型的数值模拟结果,计算条件为强度1×10^14W/cm^2,波长0.35m,脉宽1ns的Gauss激光脉冲以与靶面垂直的方向由右向左辐照4m厚的平面Au靶。
简介:在多维流体动力学计算中,流体运动和计算网格的关系可以分为两种情况。一是Lagrangian方法,即网格跟随流体运动;二是Eulerian方法,即流体流过固定;下动的网格。一般计算网格的运动是任意的。这就对应于任意Lagrangian—Eulerian(ALE)方法。ALE方法的核心是通过调整网格运动,使得数值模拟的精度、效率有所提高。它的主要步骤是:显式Lagrangian步;网格重分,即得到新的计算网格;物理量重映,即将Lagrangian步的计算结果变换到新网格上。在这3步中,较少研究网格重分。数值模拟和网格重分的一个基本前提是网格是合理的,或者说网格不能发生翻转,网格应当是凸的。而Lagrangian步数值模拟会造成网格扭曲,因此在网格重分前进行网格解扭是十分必要的。文中描述了通用的网格解扭、重分算法,使得解扭、重分后的网格有较好的几何品质,同时尽可能接近Lagrangian网格。