简介:乙型肝炎主要通过血液、血制品经注射、输血、针刺及创伤等途径传播。血液透析室临床工作的特殊性为其传播提供了条件,而且尿毒症病人缺乏免疫力,常不能消除病毒,因而血液透析患者乙型肝炎病毒携带率相对较高,并有可能传染给其他患者、血液透析室医护人员,甚至他们的家人。国外报道,乙型肝炎在世界各国的血液透析中心传播率很高。经统计1994年南京医科大学第一附属医院透析中心乙型肝炎患者21例,占总透析人数的22.8%〔1〕。因此,在血液透析中心采取各种预防和控制措施控制血液透析中心乙型肝炎病毒的感染、传播至关重要。本文结合我院情况介绍一下我们控制乙型肝炎病毒传播的经验。1 血液透析室易受乙型肝炎病毒感染的主要原因1.1 血液及血制品的传播1.1.1 直接传播
简介:据2012年7月31日GovanJM(AngewChemIntEdEngl,2012Jul31.doi:10.1002/anie.2012.3222.)报道,美国北卡罗来纳州立大学的研究人员利用细胞内自然产生的过氧化氢开发出一种开启基因表达的方法。该方法也可用作一种高度敏感的过氧化氢检测器,从而可能有助于科学家们确定这种分子在细胞健康和疾病中所发挥的作用。在功能正常的细胞中,过氧化氢作为一种信使发挥作用:它携带信号进入细胞以便让细胞对外部刺激或事件作出反应。一旦信息传递完毕。过氧化氢就扩散开来并消失掉。过氧化氢通过氧化或修饰蛋白中的某些氨基酸从而影响蛋白的功能。研究人员研究目的是是否能够利用过氧化氢的氧化能力来控制基因表达.为此他们利用一种让萤火虫发光的基因作为测试对象,设计出一种分子:它对过氧化氢比较敏感,而且能够让活的哺乳动物细胞中的萤火虫荧光素酶基因表达。当过氧化氢存在时.荧光素酶基因表达.从而导致细胞发光。
简介:提出一种基于遗传规划(geneticprogramming,GP)和进化策略(evolutionstrategy,ES)的学习方法,命名为遗传规划-进化策略(GPES),建立更准确的华法林剂量预测模型。纳入247例汉族患者。GP进化复杂特征提取,ES进化模型系数,组成模型,得出预测的华法林维持剂量,与线性回归模型、国际华法林药物基因组学联合会模型,及三种机器学习方法相比较。GPES的均方误差(MSE)(1.68×10^-2)和预测值在真实值±20%范围内的比例(20%-p)(53.33%)表现最优;其平方相关系数(R^2)(69.45%)为次优;GPES在上述3个指标在测试集与训练集中的差值δMSE(0.43×10^-2)和δ20%-p(0.92%)的绝对值最小,δR2(-10.64%)的绝对值为次小。GPES总体表现最优。因此,本研究方法GPES提高了华法林剂量预测模型的趋势相关性、精度、可用性与泛化性。
简介:开发了一种基于爬行运动的脊柱康复训练运动控制系统,该系统基于支撑床体机构和上下肢爬行训练支撑机构,控制系统由电机驱动控制电路、运动控制程序等组成。通过2个直流电机为爬行运动训练提供动力,1个步进电机为脊柱侧弯矫正训练提供动力,1个直线导杆电机控制床体旋转和2个步进电机控制腹部支撑上下、左右移动。上位机采用PCI-1240运动控制卡作为控制核心,实现爬行训练的距离、速度和运动时间等的控制;下位机使用单片机实现对训练位置和姿态的控制。试验结果表明,该运动控制系统能很好地控制脊柱康复训练仪各部分的协调动作,以满足脊柱患者康复训练的需求。
简介:目的通过观察人工股骨头置换术治疗A2型高龄股骨粗隆间粉碎性骨折的疗效,探讨A2型高龄股骨粗隆间粉碎性骨折的治疗策略。方法自1999年1月~2010年4月对23例A2型高龄粗隆间骨折采用人工股骨头置换术,男8例,女15例,年龄75~99岁,平均年龄78.5岁。按AO分型:A2.1型8例,A2.2型12例,A2.3型3例。致伤原因:跌伤19例,车祸伤4例。观察手术时间、术中出血、术后卧床时间及治疗效果并采用Harris评分进行评定。结果23例高龄病人均安全度过围手术期,其中1人术后3个月死于癫痫。22例随访8~18月,平均12月,术后8个月Harris评分,优17例,良3例,可2例,差0例,优良率91%。结论人工股骨头置换术治疗A2型骨折能达到即刻稳定的目的,可满足肢体早期负重活动,具有操作简单、手术时间短、出血量少等优点,对于高龄患者的治疗是一种好的选择。
简介:智能电外科设备通过功率控制,实现作用于不同组织时保持输出功率特性不变,从而保护组织不被烧伤,以达到良好的手术效果,其中输出功率反馈控制模块是其核心技术之一。我们设计的反馈控制模块由输出电压、电流检测电路以及单片机控制电路组成,与开关电源模块和射频功率放大器模块构成闭环反馈回路,通过实时检测表征负载上的电压、电流信号,结合单片机内部嵌入的PID控制算法,能够自动控制射频能量工作在不同模式;实验结果表明,PID控制算法中被控量从零输出到满量程输出所需时间在25.0ms以内,实际输出值与预设值误差在±5%以内,并且能够根据负载阻抗变化自动调节输出工作在不同模式。该模块能够快速、准确且稳定地控制输出达到预设值,从而实现自适应功率控制方式,为开发智能电外科设备提供核心技术基础。