简介:利用机器视觉评定小模数齿轮精度时,在齿轮整体图像中提取的边缘特征信息不能直接描述图像中的单独目标,需要后续识别算法去适应局部的多变特征.为此提出一种基于特征图像的边缘检测效果评价方法来获取丰富的局部图像信息,用于评定小模数渐开线齿轮视觉测量系统中轮廓提取的精度.首先根据齿轮图像中渐开线齿廓边缘的函数特性建立特征图像模型;然后使用基于Zernike矩的亚像素边缘检测算法获取小模数渐开线齿轮特征图像的边缘;最后结合构建特征图像的标准函数,量化特征图像的边缘检测结果与标准函数间的偏差,用以评价边缘检测的效果.实验表明,运用小模数齿轮的特征图像评价基于Zernike矩的亚像素边缘检测算法,渐开线齿廓的检测精度优于0.58pixel.
简介:惯性导航系统是目前室内定位和导航领域一项非常重要的技术,但是传统惯性导航系统中是利用算法融合地磁罗盘及陀螺仪等数据,进而提高相对位置的精度,但却无法修正已经产生的误差.所以传统惯性导航系统在内部构造复杂的室内很容易出现走错房间,穿越墙体等错误路径.为了解决这些问题,提出一种基于维特比算法的室内导航方法,利用自建室内地磁数字地图结合维特比算法,动态计算可能路径.利用维特比算法特性提高了输出路径的纠错能力,可有效排除错误路径的干扰.本导航方法能有效避免穿墙错误路径的出现,更加符合实际行走路径.试验结果表明,相对传统惯性导航系统,它在复杂室内环境下进入正确房间的准确率提高了23%.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.
简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.
简介:在考虑客户满意度和生产过程中不确定性因素前提下研究了混装线投产排序问题.以三角模糊数表示加工时间、六点模糊数表示完工时间,建立了基于交货期的客户满意度评价方法.并进一步以满意度为优化目标,结合模糊不确定因素,建立了混装线投产排序问题数学模型,并通过遗传算法进行求解.最后,通过数据实例分析了客户满意度与完工时间的相互影响,主要从三个角度对结果进行分析:(1)最小生产单元MPS(MinimumProductSet)内产品比例的均衡性对客户满意度和模糊完工时间的影响;(2)MPS内产品比例相同的条件下,模糊交货期区间权重比例对客户满意度的影响;(3)相同条件下,客户满意度和模糊完工时间分别作为优化目标时两者之间的差异.从而验证了该模型的有效性.