简介:针对因影响因素众多而难以预测的隧道沉降问题,使用粒子群算法(PSO)优化支持向量回归模型(SVR)并结合灰色理论中的等维新息,提出了混合模型对隧道沉降时间序列数据进行预测研究.与ELM极限学习机预测模型及PSO-BP神经网络预测模型进行了对比实验.发现等维新息SVR模型在预测精度上要优于其它两个模型,于是得出该模型可以有效地应用于隧道沉降时间序列的预测研究.
等维新息SVR模型对隧道沉降时间序列的预测研究