简介:介绍和分析了在当前成像跟踪系统中常用的几种点目标滤波检测算法。为了满足图像处理实时性要求,设计了一套针对图像滤波算法的FPGA硬件实现结构。该结构具有FPGA高速并行计算能力,能在信号读出的过程中实时地完成多种滤波处理。成像实验证明该方案切实可行,具有良好的实时滤波效果。
简介:ZnCuInS/ZnS量子点是一种无重金属“绿色”半导体纳米材料。制备出了直径为2.9nm的ZnCuInS/ZnS核壳量子点。从ZnCuInS/ZnS量子点的吸收及光致发光光谱中可以看到,量子点的斯托克斯位移为410meV。这样大的斯托克斯位移表明,ZnCuInS/ZnS量子点的复合机制与缺陷能级有关。研究并计算了在辐射及非辐射驰豫过程的(Huang-Rhys)因子及平均声子能量。结果表明在50~373K范围内,能量带隙的变化以及光致发光光谱的增宽是分别由光从能带边缘向缺陷能级跃迁及载流子声子耦合导致的。
简介:场景锁定技术是视频跟踪领域的一个关键技术,需要对图像的全局运动进行估计,常用的运动估计算法由于计算量大、对噪声敏感等因素很难得到实际应用。为了减少运动估计的计算量,提高全局运动估计的精度,提出了一种基于Harris角点全局运动估计的场景锁定方法。将图像分成4×4的16个块,选取每个块中响应值最大的角点,以参考图像角点周围矩形块与待匹配图像进行匹配,然后利用RANSAC算法对角点进行一致性检测,利用最小二乘法解算全局运动参数,最后计算图像之间的累积运动。实验结果表明,该算法运动估计精度高,稳定性好,能较好地实现场景锁定。
简介:动目标多观测点图像去模糊及三维重建是三维视觉检测与测量技术应用中的难题,而特征检测对去模糊及三维重建的结果影响较大。针对这个问题,提出了一种基于多观测点图像SURF特征配准及去模糊的三维重建方法。首先对图像进行SURF特征点检测并对这些特征点进行配准,根据配准的特征点求解Kruppa方程得到各视点图像的相机内外参数矩阵,进而求取图像的点扩散函数即模糊核并对图像进行去模糊处理。其次,提取图像中的SURF特征点并进行配准,求取任意两幅图像的仿射变换矩阵,获取多观测图像的像素点投影。最后根据SURF特征的配准及多观测的投影结果,对去模糊后的图像进行立体匹配,从而完成多观测图像的三维重建。实验结果表明提出的方法对多观测点图像去模糊及三维重建具有良好的效果。