简介:提出了基于模糊逻辑控制扭矩分配策略,建立了各功能组件模型.并利用ADVISOR2002仿真平台。完成了该模糊逻辑扭矩控制策略和电气辅助控制策略仿真比较.结果表明,本文提出的模糊逻辑控制策略对提高混合动力汽车的动力性和燃油经济性。改善尾气的排放有明显的作用.
简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.
简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.
简介:在外弹道数据处理中,奇异点处理、特征点求取与随机误差削弱都是精度估计的关键环节.本文首先利用小波变换在处理奇异点、特征点、噪声消除方面的优势,对观测数据进行基于小波变换的分解、融合、重构处理,剔除奇异点,查找特征点,削弱随机误差.其次利用节点自由分布B样条描述导弹运动轨迹,使该弹道确定方法转化为关于求解导弹轨道样条表示参数和测量系统误差的多模融合的非线性优化问题,采用非线性最优化方法,进而得到待估参数的最优估计,完成弹道的最佳逼近.仿真结果表明,该技术应用在奇异点处理、特征点提取与随机误差削弱方面效果较好,多模融合算法能减少计算量,且能切实提高参数估计精度.
简介:研究了本质线性非完整系统的Hamilton原理,分别应用与不应用Appell—Chetaev条件证明了本质线性非完整系统Hamilton变分泛函取驻值的充分必要条件.结果表明,在本质线性非完整系统中,Hamilton作用量是稳定的作用量,与完整系统的Hamilton原理具有相同的形式与本质;而且由Hamilton原理得到的运动方程不会导致任何力学与数学上的矛盾.最后给出了Hamilton原理向本质非线性非完整系统推广时产生数学与力学上不合理的根本原因。
简介:研究了Lufie广义系统基于状态观测器的控制器设计问题.通过使用Lyapunov稳定性理论,线性矩阵不等式方法,分别给出了状态反馈控制器和观测器的设计方法,并建立了分离原理,进而得到了基于观测器的控制器设计方法.所得结论对广义系统理论本身的发展和实际应用都有非常重要的意义.最后给出了仿真实例.
简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.