简介:针对多体系统动力学微分-代数方程求解问题,研究基于Lie群表达的约束稳定方法.首先引入新的Lagrange乘子,结合位移约束、速度级约束和加速度级约束方程,构造了新的Lie群微分-代数方程.然后使用向后差商隐式方法和CG(Crouch-Grossman)方法,对微分–代数方程进行离散求解,得到精确度较高的动力学仿真结果.该方法在精确保持各级约束方程的同时,保持旋转矩阵的正交性,并且使系统总能量误差较小.
简介:利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.
简介:航天器对恶劣动力学环境的适应能力直接关系到整个航天飞行任务的成败,振动试验控制技术是动力学环境试验的关键环节.本文分析了近年来国内外航天器振动试验设备和振动控制算法的研发动态、基本原理和关键技术达到的水平.提出了跟踪研究的基本思路,途径及建议.
简介:在简单介绍WH-800型离心机基本结构及工作原理的基础上,介绍了基于重构吸引子轨迹矩阵的奇异值分解技术,并引入自相关函数对现有奇异值分解技术加以改进.通过对现场实测故障信号的分析,表明改进的奇异值分解技术具有很好的降噪效果,能在强噪声背景环境下准确提取设备的故障特征信号,为离心机的故障诊断提供了一种新的思路.
简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.
简介:Leland模型是在考虑交易费用的情况下,对Black—Scholes模型进行修改得到的非线性期权定价模型.本文针对Leland模型,提出了一种求解非线性动力学模型的自适应多尺度小波同伦摄动法.该方法首先利用插值小波理论构造了用于逼近连续函数的多尺度小波插值算子,利用该算子可以将非线性期权定价模型方程自适应离散为非线性常微分方程组;然后将用于求解非线性常微分方程组的同伦摄动技术和小波变换的动态过程相结合,构造了求解Leland模型的自适应数值求解方法.数值模拟结果验证了该方法在数值精度和计算效率方面的优越性.
多体系统动力学Lie群微分-代数方程约束稳定方法
群表示理论在对称系统H2/H∞控制中的一些应用
航天器振动试验控制技术进展
基于奇异值分解技术的离心机故障诊断
复杂机械系统动力学建模技术研究与应用
求解非线性期权定价模型的自适应小波同伦摄动技术