简介:分析了风力机叶片大挠度挥舞振动特性.基于Hamilton原理,建立了叶片大挠度挥舞振动控制方程,其中非稳态气动力由Greenberg公式得出.使用瑞利一利兹法求解振动特征问题,得到振动的频率和无阻尼模态函数.基于得出的模态函数,使用Galerkin方法将控制偏微分方程离散,得到模态坐标方程.将振动位移分解为静态位移和动态位移,得到了静态位移和动态位移方程,考查了入流速度比对静态位移和气动阻尼的影响,并对大挠度挥舞振动动态响应进行了分析,得到如下结论:大挠度挥舞振动静态位移沿叶片展向随人流速度比的增大而增大,叶尖处位移最大;当人流速度比较小时,振动为小振幅的周期运动,人流速度比较大时,振动为大振幅的拟周期运动.
简介:为分析竖向环境振动对人车路系统耦合振动的影响,人体采用并联动力模型,车辆采用7自由度全车模型,路面采用Kelvin地基上梁单元进行模拟,通过车路之间的动态轮胎力建立起考虑竖向环境振动作用的人车路耦合振动方程;运用New-mark积分法对方程组进行求解,采用人体竖向振动加速度均方根值对车辆乘坐舒适度进行评价;对地震波频率和地震波幅值对系统振动的影响进行讨论,以及车辆乘坐舒适度和乘坐者人体生理反应进行分析.数值分析结果表明:竖向环境振动加剧了人车路系统的振动,显著增大了车辆乘坐舒适度指标;地震波频率和地震波幅值对车辆乘坐舒适度的影响都很大.
简介:主要介绍一种基于Modelica语言的泵车臂架系统多领域耦合动力学仿真建模方法.泵车臂架系统是典型的机械、液压、控制等多领域耦合系统,在其频繁的启动、制动过程中,变幅机构和液压元件均承受着强烈的冲击和振动.传统的单一领域动力学建模方法很难全面反映泵车臂架系统的整体动力学性能,然而通过几种仿真工具进行联合仿真的方法亦难免存在建模效率、仿真速度等方面的问题.针对以上不足,以某型泵车为研究对象,提供一种基于多领域统一建模语言Modelica的机械、液压及控制等多场耦合的泵车臂架系统动力学建模方法,并对其工作过程进行了动态仿真.该模型具有模块化、层次化、规范化和参数化,以及仿真模型互操作性和重用性强的特点.