简介:以阿拉伯树胶为分散剂,采用液相还原法制备超细银粉。探讨分散剂种类、pH值和温度对银粉形貌和粒径的影响。研究表明,阿拉伯树胶通过化学吸附作用可以更好地吸附在银粒子表面,且比其他分散剂具有更好的分散作用。通过调节pH值,银粉的粒径可在0.34~4.09μm的范围内调节;通过改变反应温度可以控制银粉的表面形貌。在21.8~70°C的温度范围内,可成功制备振实密度大于4.0g/cm3的银粉。在50°C的最优温度下,银粉的振实密度大于5.0g/cm3。该合成方法具有条件温和、银浓度高的优点,是一种合成用于电子浆料的高品质银粉的有前景的方法。
简介:本文介绍了PCB行业发展的历史及现状,PCB基材用热压机的分类,以及PCB电子行业的加热系统设计应用,文中针对合成导热油、矿物型导热油、重质烷基苯型导热油的热稳定进行了系列实验。
简介:采用声化学法研究Zn掺杂对氧化镉纳米结构生长过程的影响.纳米颗粒的X射线衍射(XRD)谱表明,所制备的CdO样品为立方结构.场发射扫描电子显微镜(FESEM)图像显示,样品用Zn原子掺杂时,其形貌发生变化,粒度变小.利用室温光致发光(PL)和紫外?可见光谱(UV-Vis)分析技术研究样品的光学性质,结果表明,不同的发射带由不同的跃迁引起,CdO能带隙由于掺杂而增大.对纳米结构电学性质的研究表明,Zn掺杂导致光生载流子密度提高,从而使得纳米结构的导电性提高,光照射纳米结构所产生的光电流亦增大.根据本研究的结果,Zn掺杂可以改变CdO纳米结构的物理性质.
简介:采用反应合成方法制备孔隙度为54.3%的高纯Ti3SiC2多孔材料,并研究其在400~1000°C下空气中的氧化行为。采用热重-差热分析法、扫描电镜、X射线衍射技术、能谱仪、拉曼光谱、BET比表面分析法和孔结构测试等研究Ti3SiC2多孔材料在氧化前后的氧化动力学、物相组成、微观形貌以及孔结构参数演变。结果表明:形成不同晶型TiO2氧化产物是影响Ti3SiC2多孔材料抗氧化性及孔结构稳定性的主要因素。由于氧化产物体积应力以及热应力的存在,因此,在400~1000°C试验过程中试样表面均出现开裂现象。其中,在400~600°C下形成的锐钛矿型TiO2会导致Ti3SiC2晶粒出现严重开裂,并引发快速氧化以及孔径和透气度的异常减小。600°C以上在氧化过程中主要形成金红石型TiO2,开裂现象得以缓解,但是氧化膜的外延生长大幅降低了Ti3SiC2多孔材料孔隙的连通性。
简介:提出一种合成γ-LiAlO2的替代解决方案—改进燃烧法直接合成γ-LiAlO2,并将其用于相对简单的反应体系中,原料为非氧化性化合物如Al2O3和LiOH,燃料为尿素。采用1:1、1.5:1和2:1的非化学计量Li/Al摩尔比,在900和1000°C下反应5min,制备LiAlO2,并对其组织和结构进行表征。考察Li/Al摩尔比对材料形貌和高γ射线辐照下材料稳定性的影响。结果表明,所得粉体的晶体结构为?-LiAlO2和?-LiAlO2,其取决于Li/Al摩尔比。因此,用该方法可以成功合成微砖状、多面体状和层状?-LiAlO2,而无需任何后续处理。γ辐照结果表明,所得到的?-LiAlO2不分解,只形成少量的Li2CO3;由此可以确定,辐照会导致固结,不利于氚的有效提取;结果证明,用燃烧法生产高纯度?-LiAlO2不需要硝酸盐前驱体。
简介:将由Zn(CH3COO)2·2H2O和Na2CO3通过室温研磨反应获得的前驱体在PEG400存在下于240°C热分解获得大量的ZnO六棱锥产物。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)表征产物的晶体结构和形貌。进一步的实验结果表明:PEG400在ZnO六棱锥形成过程中发挥着重要作用,单六棱锥和双六棱锥的结构差异来自于热分解反应。光致发光谱(PL)测试表明:ZnO六棱锥在386nm处展示强的近带隙发射,在550nm处展示较弱的绿光发射。435cm-1处的拉曼振动表明ZnO六棱锥具有良好的晶体质量。
简介:在氩气气氛下,将Ag2O与石墨通过机械活化或热还原反应生成Ag,对其等温还原过程的动力学进行研究。结果表明,采用Johnson-Mehl-Avrami模型能合理地解释Ag2O与石墨经机械活化和热还原合成Ag的过程。采用相同的模型来研究机械活化和热还原反应合成Ag的动力学时,机械活化还原过程中的Avrami指数比热还原的要高;热还原和机械活化过程中的晶核长大机制分别是扩散控制和界面控制。
简介:通过磁化学熔体反应法在7055(Al-3%B)?Ti反应体系中成功制备TiB2/7055复合材料。利用XRD、OM和SEM等分析检测技术研究复合材料的相组成和微观组织。结果表明,脉冲磁场作用下生成的TiB2颗粒呈多边状或近球形,尺寸小于1μm,均匀分布于基体中。与未施加脉冲磁场的复合材料相比,施加磁场后α(Al)晶粒平均尺寸从20μm减小到约10μm,第二相从连续的网格状分布变为非连续性分布。在磁场作用下,复合材料的抗拉强度从310MPa提高到333MPa,伸长率从7.5%提高到8.0%。此外,与基体相比,在载荷为100N,磨损时间为120min时,复合材料的磨损量从111mg降低到78mg。