简介:针对传统交通控制与诱导模型及算法的不足,提出了具有中心协调系统(CCOS)的交通控制与诱导协同模型。利用数据融合技术将历史数据的短时交通预测、交通事件检测结果以及实时交通流数据设计面向交通动态的信息融合,并采用神经网络技术构建基于神经网络的交通控制诱导协同模型,同时对模型的参数进行了确定。。通过典型的路网进行仿真实验和对比分析,实验验证了该模型具有可行性和有效性。
简介:提出一种步态能量图(GaitEnergyImage,GEI)的Gabor小波特征与协同表示的步态识别算法.首先通过运动目标检测,二值化和形态学处理等预处理操作得到步态轮廓图,然后进一步从步态轮廓图计算得到步态能量图.该算法将步态能量图的Gabor特征作为特征矢量,采用协同表示的方法进行步态识别.在实验阶段,通过在中科院自动化研究所CASIA步态数据库的DatasetB上进行测试,证明上述算法具有运行速度快的优点,并且对于跨视角步态识别具有一定的鲁棒性.
基于神经网络的交通控制诱导协同模型
小波特征和协同表示的步态识别研究