简介:针对三维弹道目标,给出了一种有效的基于粒子滤波的跟踪算法。这种算法以标准的粒子滤波算法为基础,根据贝叶斯原理利用局部线性化技术获得最佳近似的重要性密度函数以避免粒子退化现象,并且利用Metropolis-Hastings(MH)采样构造的马尔科夫链得到更加符合目标分布的样本,从而最小化重采样后的粒子枯竭问题。此外,这里采用Kullback-Leibler距离(KLD)指标对不同粒子滤波算法的性能进行评估。仿真结果表明,该三维弹道目标跟踪算法粒子群与参考粒子群(近似真实目标概率分布的粒子群)之间的KLD比标准粒子滤波与参考粒子群之间的KLD更小,因此,能获得比标准粒子滤波算法更好的跟踪效果。
简介:在天波超视距雷达(OTHR)中,机动目标的多普勒谱展宽,会导致相干积累损失,影响目标检测。传统的时频分析方法将目标回波信号投射到时频域中再通过能量积累实现机动目标检测和参数估计,但该方法在瞬态干扰存在的情况下效果较差且计算量过大。考虑到机动目标和瞬态干扰在时间-频率变化率域中的不同特性,提出了一种基于时间-频率变化率分布(TFRD)的机动目标检测算法,该算法通过TFRD构建时间-频率变化率(T-FR)域,并在T-FR域中进行目标参数估计,可以降低瞬态干扰对机动目标检测的影响。经实测数据仿真验证,该算法可以在瞬态干扰存在的情况下有效地检测出机动目标,而传统的WHT(Wigner-Hough-Transform)算法则由于瞬态干扰影响导致检测错误。此外,该文算法避免了使用Hough变换,减小了运算量,使其可以更好地应用于工程中。