简介:摘要:黄河流域还存在许多环境问题,并且上中下游都有各自比较突出的环境问题,因此,如果使用同一种治理办法来治理黄河的话,效果不会很好。所以要因地制宜,根据不同黄河流域的环境问题来提出不同的治理方案。让黄河流域的每一个地方都能够拥有自己独特的治理方案,进行有效的治理。这就需要国家出台相关政策,开展黄河系统治理的研讨会,召集一些有经验的专家来探讨,如何科学系统有效的治理黄河流域存在的问题,对流域存在的主要水问题,研究制定开发、利用、节约、保护水资源和防治水旱灾害的总体部署,研究提出加强流域综合管理的政策措施。鉴于此,本文对黄河流域规划与黄河流域系统治理进行分析,以供参考。
简介:【摘要】水环境是人们赖以生存的基础保障,为了进一步提高流域水环境水平,融入海绵城市理念具有重要意义。下面论文就对海绵城市进行分析,并探讨海绵城市理念下水环境治理的问题及措施。
简介:摘要:国家能源集团乐东发电有限公司积极推行“党员先锋”积分管理,建立科学完善的党员考核评价体系,实现了对党员的考核评价由定性到定量的转变,考评依据更加科学化、规范化和标准化,使得以实干论先锋、用实绩赚积分成为党员共识,有效激发了广大党员干事创业的主动性和积极性,增强了推动公司高质量跨越式发展的合力。
简介:【摘 要】创新是引领发展的第一动力。黔北水力发电总厂始终把科技创新、管理创新、技术创新作为企业转型发展、创新创效、高质量发展的重要手段。通过对跨区域、跨流域中小水电站的远程集控管理模式的探索与实践,现已建成贵州金元中小水电最大跨区域、流域的洪渡河流域集控中心。
简介:摘要 :在对机械产品进行“功能运动动作”结构化分解的基础上 ,将影响元动作装配单元装配精度的误差源分为零部件的形状误差、位置误差、装配位置误差和运动误差等四类误差源。引入误差链接模型作为元动作装配单元误差关联关系的基本封装单元 ,构建结构化误差关联模型链接网络和链接矩阵 ,形象描述误差间的耦合嵌套关系。提出基于误差链接模型的装配误差传递路径求解方法 ,用老鼠迷宫算法搜索所有可能的误差传递路径,以装配精度最高作为判别依据 ,得到各误差分量的有效传递路径。以蜗杆转动元动作装配单元蜗杆轴线平行度误差有效传递路径为目标 ,对上述方法进行验证 ,结果表明该方法能够高效地搜索到所有误差传递路径 ,并快速获得有效传递路径。该方法的提出为整机装配过程质量预测与控制提供了理论依据。
简介:摘要:对于初创型的小微企业来说,人工的效率代表了整个企业的效率,而一个行之有效的管理是每个管理者面对的顽固问题,而矩阵管理则可以解决一部分小微企业的管理问题,矩阵管理可以用于帮助初创型企业度过创业初期的艰难处境,同时也可以拯救家族型企业中因乱用人员导致的混乱局面并将其拉回正轨。
简介:摘要:电力控制单元在电动汽车中起“心脏”作用,因此各个整车厂及电控单元零部件公司都在投入大量的人力物力进行研究。 随之而来的各个控制器散热的问题越来越受到人们的关注。以某 纯电动环卫车为研究对象,采用 CAE仿真分析对冷却水道进行流 -固共轭传热模拟分析,根据得出的水道系统的流体分布、流线图及压强云图,为后续液冷散热及水泵选取提供理论依据,进而设计出满足各个控制器在正常运行工况下的散热性能的冷却水道。 关键词:电动汽车、冷却水道、流体分析、散热分析、 CAE仿真 1 引言 新能源汽车以电能作为动力源,取代了传统的燃油,这不仅缓解了能源问题,更减轻了尾气排放带来的环境污染问题,发展前景广阔 [1]。新能源汽车电力控制单元通常采用水冷方式进行散热。水冷散热效果的好坏关键体现在水道设计是否合理上,水道的设计至关重要。 目前使用比较多的是并联式与串联式水道两种。并联式水道难以保证相邻水道冷却液的流速,进而导致电力控制单元内部的控制器散热不均匀。影响控制器的工作性能与寿命,不利于批量化、平台化发展 [2-3]。同时采用进出水口设计在冷却水道的同一端,避免了由于进出水口温差而产生的两端的温度梯度,散热比较均匀 [4]。 本文通过传热学和流体力学的理论研究,通过 CAE仿真设计出满足电力控制单元中各个控制器散热需求的冷却水道。 2 冷却水道基本设计要求与冷却原理 液冷板的散热 前提为 各控制器 基板 与 冷却液 之间存在温度差。温度差是热量的传递的前提条件, 其散热传递的方式为温度高的区域流到温度低区域 Error: Reference source not found 。 固定于液冷板的 控制器 基板地面 与 液冷板表面 的对流换热, 可由 热传导及物质传递 两种 方式 同步 进行。 若控制器的温度导入到其基板使基板的温度 比 冷却液的 温度高, 控制器的热量通过热传导到液冷板壁面的冷却液粒子,并通过冷却液流动传递出去实现散热;当被加热的冷却液粒子流动到低温区域使,再把热量传递给低温粒子。因此设计 冷却板 时,液冷板与冷却液的对流系数及冷却的流速两个因素需要着重考虑 Error: Reference source not found 。 液冷板 应具有良好的冷却效果, 液冷板 的设计要同时考虑散热能力与冷却水泵的冷却能力,具体设计要求如下: 为满足冷却液的流动速度,从而可以带走更多的热量,液冷板内部的散热水道的流阻要足够小。 液冷板的冷却 水道要尽可能 多,内部要设计多个散热筋,可以更多的带走控制器的热量 。 液冷板的上下腔体通过搅拌摩擦焊进行密封焊接,腔体表面的固定孔距离摩擦焊缝应该有 8mm以上,以保证加工螺纹孔时不会导致焊缝失效。 液冷板的加工采用压铸开模,因此内部的散热筋的厚度应该尽量小,最好不要超过 6mm,以及液冷板的其他位置厚度也要尽可能小。这样可以保证模具件在压铸时尽量没有气泡和缩孔,保证开模的成品率。 液冷板的冷却液进出水口采用外接水管与整车冷却系统连接。水管的接口位置需要进行防水设计,可以采用水管与进出水口螺纹连接和水管胶进行密封。也可以采用水管与进出水口过盈配合实现密封。 冷却水道体积流量的计算 模具的热量与自然对流散发到空气中的模具热量。辐射散发到空气中的模具热量及模具传给注射机热量的差值,即为用冷却水扩散的模具热量。假如模具内释放的热量全部由冷却水传导,即忽略其他传热因素,那么模具所需的冷却水体积流量可用下式计算: QV=m q/60 c( 1﹣ 2) 式中: QV—冷却水体积流量, m3/min m—单位时间内注射入模具内的材料质量, kg/h c—冷却水的比热容, J/(kg·K) —冷却水的密度, kg/m3 1—冷却水出口处温度,℃, 2—冷却水入口温度,℃ 3 水道系统流动性分析 3.1模型信息 表 1研究属性 研究属性 值 研究名称 热分析( CFX ) 研究类型 流 - 固共轭传热 网格类型 六面体、四面体 实体名称 材料名称 密度( kg/m3) 比热容( kJ/kg*K) 热导率( W/m*K) 水冷板 铸铝 ADC12 2740 0.965 96.2 富士 IGBT基板 Cu+Ni 6800 0.9 364 DC-DC基板 铝合金 AL6063 2689 0.9 201 IPM 基板 冷却液 Water 997 4.18 0.6069 表 2几何模型及材料属性 表 3 发热模块的耗散功率数据 实体名称 耗散功率 (W) 表面积( m2) 热流密度 (W/m2) IGBT基板 (单块 ) 2040/3 0.00397404 171110.51 DC-DC基板 110 0.0450158916 2443.58 IPM 基板 (单块 ) 45 0.001303238 34529.38 3.2水道系统流动性分析 通过对水道系统进行 CAE仿真分析,得出水道系统的流体分布、流线图及压强云图,为后续液冷散热及水泵选取提供理论依据。 (一)建立水道结构模型,如图 1所示 图 1 水道模型 建立有限元网格模型,如图 2 所示 图 2 水道有限元网格模型 (三)仿真结果(水流量 Q=18L/min) 图 3 流线图 图 4 压强云图 (四)仿真结果分析 通过查看流线图及流动性可以发现: 1)该集成式电力控制单元的冷却水道系统内部水流速度分布不均,尤其在拐角处,存在一定的漩涡,增大流阻; 2)在电机控制器的 IGBT下方,水道深度和截面积过大,使得其下方水流流动缓慢,影响与壁面的换热,降低水道的散热能力; 3 )如图 3中,流速曲线并未经过这些倒角位置,表明此处的水流速很慢,散热效果不好;凸出的一小段位置,这两个位置流线较少,流速也低,此处的水流的对流散热能力较差。 (五)水道优化策略 1)可以将水道的各部分截面积尽量设成一致的,从而会降低因局部截面积变化而产生的局部流阻; 2)根据对流散热原理可知,通过增大水流速度及散热面积,可提高散热能力;因而可适当降低 IGBT下方水道深度,同时增加散热筋的数量,可提高水道的散热能力; 3 )针对上面结论,可以适当增大倒角,可使水流过渡更平滑,从而降低流阻;将并联水道的两个支路的开口均向右移动到凸出位置处,从而使水流能够均匀的流经这些地方,从而更好的对 IGBT进行散热,同样出口处的凸起也应去掉。 4 优化后的冷却水道的流 -固共轭传热分析 4.1模型简化 在对水冷板进行流 -固共轭传热分析前,可对其结构进行一定的简化处理,简化后的结构模型主要包括:水冷板、 IGBT基板、 DC-DC基板、 IPM基板以及内部流体结构如图 5至图 7所示。 图 5整体三维模型正面 图 6整体三维模型背面 图 7水道模型 4.2网格划分 采用四面体和六面体对模型进行网格划分,总网格数约 187.2万如图 8和图 9所示。 图 8整体网格 图 9水道网格 4.3载荷及边界条件的施加 根据 IGBT、 DC-DC、 IPM功率器件的耗热量及热耗分布,将耗散热量施加到其相应热流面上;设置 IGBT基板与水冷板接触热阻设置为 1.0e-5 K*m2/W (即 Rth(c-s)的值,由导热硅脂的热导率和填充厚度决定);设置 DC-DC、 IPM基板与水冷板接触热阻设置为 3.82e-5 K*m2/W;外界环境温度设置为 65℃;流体域:设置入口流速为 1.31m/s(水流量为 20L/min,管内径 18mm),入口温度为 65℃;出口设置压力出口其值为 0Pa。 4.4散热分析结果 根据所建立的模型以及温度载荷和边界条件,最终模拟出水冷板结构体和流体的稳态温度场分布结果云图,如图 10至图 18所示。 (一)水冷板结构温度场分布云图 根据温度场分析结果可知,该水冷板最高温度约为 89.5℃,产生位置为 IGBT模块晶元区正下方基板偏入口位置;最低温度为 65℃,产生在入水口位置。 IGBT模块基板最高温度约为 89.5℃,最低温度约为 70.5℃; IPM模块基板最高温度约为 72℃,最低温度约为 69.6℃; DC-DC模块基板最高温度约为 68.5℃,最低温度约为 65.5℃。 图 10水冷板温度场分布云图( 正面) 图 11 水冷板温度场分布云图(背面) 图 12 IGBT基板的温度场分布云图 图 13 IPM基板的温度场分布云图 图 14 DCDC基板的温度场分布云图 (二)水道系统内流体温度场分布、流速云图及压力云图 根据流体温度分析结果可知,冷却系统内部流体的最高温度约为 80.8℃,发生在与 IGBT基板接触的正上方偏入口区域;最低温度约为 65℃,发生在入水口位置;出口平均温度约为 66.13℃,相对入口温升约为 1.13℃。由流体在水道系统内流速和压力云图可知,整体流动性很好,进口平均压强 21119.8Pa,出口处平均压强 14.6527Pa。进出压损约为△ P=21105.1473Pa, 体积流量 Q=0.000333m3/s,故所得流阻约为△ P /Q=6.33*107 (N·s·m-5),可以有效带走其上功率器件的耗散热量。 图 15 水道温度场分布云图(正面) 图 16 水道温度场分布云图(背面) 图 17水道压力分布云图 图 18 水道速度流线图 5 结论 电力控制单元的冷却水道的设计不仅需要考虑各个控制器的散热需求,还要考虑水道的压力损失及冷却液的流动速度。冷却水道的设计过程中,可通过增加水道的数量来减小水道的宽度,减小水道的截面积,进而获得较大的冷却液流速和水道的总长度,提高水道的散热能力。但在水道数量增加的同时,随着水道截面积的减小,水道的压力损失也会快速增加。在设计冷却水道的过程中,可以在满足压力损失和加工难度的前提下,尽可能多的增加水道的数量来提高整个冷却系统的散热能力。 参考文献 Wang S W, Zhang Y, Hu J M. Thermal analysis of water-cooled permanent magnet synchronous motor for electric vehicles [J]. Applied Mechanics and materials,2014,610; 129-135. 刘兆江 .采煤机用防爆型水冷电机设计 [D].哈尔滨:哈尔滨理工大学, 2009. 黄苏融,张琪,谢国栋,等 .直接夜冷和热屏蔽的三明治结构电机电枢:中国, 201010291003.7[P].2010-09-21. 王继强,王风翔,孔晓光 .高速永磁发电机的设计与电磁性能分析 [J].中国电机工程学报, 2008,28( 20); 108-110. 李伟力,丁树业。靳慧勇 .基于耦合场的大型同步发电机定子温度场的数值计算 [J].中国电机工程学报, 2005,25( 131): 129-134. 丁树业,葛云中,孙兆琼,等 .高海拔勇风力发电机流体场与温度场的计算分析 [J].中国电机工程学报, 2012,32( 24): 74-79.
简介:摘要:本文对多河流流域的水电远程集控系统和如何使用技术实现集控系统进行研究和分析,总结多河流流域集控的意义,研究集控系统功能要求,帮助完善多河流流域远程集控系统的建设,以及提升水电厂自动化监控水平。
简介: 摘要: 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。