简介:针对目前超短期风速预测精度不高的问题,提出了一种改进样本加权的SVM超短期风速预测方法。对样本加权中基于距离函数的时间序列相似性度量方法进行改进,在欧式距离的基础上,加入区间变化趋势相似度函数,将欧氏距离和趋势相似度函数按权值组合,构造了新的相似性度量函数。对训练样本进行相空间重构,基于样本相似性因素对训练样本进行加权,建立加权SVM超短期风速预测模型。分别建立随机森林、梯度提升树、SVM以及改进加权SVM超短期风速预测模型,研究表明,对SVM进行改进样本加权后,可以将预测误差从7.61%降为7.46%,有效降低了超短期风速预测误差,验证了该方法的有效性。
简介:Tri—Training是半监督协同训练的代表性算法之一,它运用统计技术标记置信度,并结合噪音学习理论进行无标记样本分类。当扩充样本训练集不满足噪音学习理论时,会进行随机采样,针对传统Tri-Training算法随机选取基础分类器的扩充训练样本集会引入噪声这一缺陷,通过更改扩充样本训练集选取方式,剔除可能提高分类误差的样本。在健康大数据集上进行一系列验证试验,实验结果表明,改进的算法优于原始算法,降低分类错误率。