简介:摘要基于人脸特征的独特性、易提取、非接触式采集的特点,人脸识别技术正被广泛的用于身份识别。本文简要概括了和分析了人脸识别技术的基石——图像预处理技术,将图像预处理技术划分为归一化、图像增强、基于数学形态学的人脸图像处理三步,并简要分析了每一步里的关键步骤和技术,如直方图均衡化、高斯平滑滤波等。
简介:极端值亦称离群值或边远值,即在观测值中远远偏离数据主体部分的个别值,这些值不能服从假定的概率分布。如果将极端值和其它数据不加区别地等同对待,会使数据的离散程度加大,计算出的数字特征不能反映主体数据的特征。对极端值进行识别并加以处理,是探索性数据分析的一个重要问题。经过适当处理后的数据,具有较强的耐抗性,即对局部数据的不良行为具有不敏感性。在统计分析中,识别极端值的方法有以下几种:(一)四分展布法四分展布法是一种经验法,首先计算中位数和四分位数:设有数据X1,X2…Xn,将其从小到大排列,记为X(t),X(2)…X(n);当n为奇数时,n=2k+1,中位数=X(k),中位数位次为k+1;当n为偶
简介:摘要在计算机技术与信息技术发展背景下,图像识别技术备受关注。图像识别技术形成与更新成为主要发展趋势,且前景广阔,不管是信息搜集、医疗亦或是产品安全,均对图像识别技术进行了运用。所谓的图像识别技术,即借助计算机结合既定目标处理系统前端捕获图片,在日常生活与工作中较为常见,以条码识别和指纹识别为主。与此同时,在信息时代背景下,图像识别技术作为关键性技术,作为时代的衍生物,其存在的价值是为了让计算机代替人工对大量的物理信息进行处理。在计算机技术水平不断提升的前提下,我们更加深刻地认识到图像识别技术的价值。由此可见,基于人工智能深入研究并分析图像识别技术具有一定的现实意义。图像识别技术流程为先获取信息,再对信息进行预处理,通过信息特征抽取和选择过程,来实现分类决策与分类器设计功能。本文引入了图像识别技术,对该项技术的基本原理进行了分析,并研究了以人工智能为基础的图像识别。
简介:摘要根据高速公路交通场景的特点,通过分析图像序列中的纹理变化、提出以二值化图像的投影梯度统计值作为判定条件来识别背景图像。首先对图像按车道分块,通过子图像的投影统计和投影梯度统计值识别背景,然后根据各子图像的统计结果重建背景模型。实验结果表明,基于投影和梯度统计的方法,能准确的完成背景识别和建模,对低亮度车辆和光线都有很好的抗干扰性,处理时间少。该方法背景识别和建模的速度和准确度能满足高速公路交通场景视频监控系统的要求。
简介:摘要人脸识别是模式识别以及图像处理研究的重要内容和热点之一,也是生物特征识别技术中的一个非常活跃的课题。人脸识别技术具有实时、准确和非接触等优势,因而较容易被用户接受和认可,目前已经在出入管理、门禁考勤等系统中有着广泛的应用。本文主要研究基于Gabor小波变换与协同表示的人脸识别算法,就其中的特征提取等相关问题进行了深入探讨。首先用Gabor小波对人脸图像进行特征提取,由于变换后的特征维数较高,所以要对变换特征进行降维,本文结合协同表示的方法提出了一种新的基于Gabor特征与协同表示的人脸识别算法,实验结果表明该方法对于人脸图像的光照、表情和姿态等变化具备较强鲁棒性,算法运行速度较快。