简介:为准确计算动车组牵引能耗,提出BP神经网络模型和改进牵规法预测动车组牵引能耗。选取机车类型、坡度、目标速度、停站方案等8个因素作为动车组牵引能耗之BP神经网络的输入变量,建立3层BP神经网络模型。采用增加动车组运动方程和优化基本阻力公式方式对牵规法进行优化。利用正交实验法对动车组牵引能耗影响因素进行分析,并对111组数据进行模拟验证。研究结果表明:BP神经网络模型的误差在4.26%以内,改进牵规法的误差基本在10%以内,证明BP神经网络模型比改进牵规法模型能更好地预测动车组的牵引能耗,而且当目标速度增大时,BP神经网络模型的计算精度明显比改进牵规法的计算精度高;目标速度和坡度对牵引能耗有显著影响。
简介:动车组是一种适合铁路中短途客运运输的现代化交通工具.动车组的分类可以有多种:按照传动类型,可分为电动车组和内燃动车组;按照动力形式,可分为动力集中型和动力分散型;按照传动方式,又可划分为电传动和液力传动两种类型.