简介:文本分类问题中,卡方特征选择是一种效果较好的特征选择方法。计算单词的卡方值时,先计算单词针对每个类别的卡方值,再通过类别概率将卡方值调和平均,作为单词相对于整个训练集合的卡方值,这种全局方法忽视了单词和类别间的相关性。针对这一问题,提出基于类别的卡方特征选择方法。基于类别的方法针对每个类别遴选特征词,特征词数量根据事先设定的阈值、类别的文档数和整个训练集合文档数计算得到,不同类别的特征空间可能包含相同的特征词。采用KNN分类方法,将基于类别的方法与全局方法进行比较,实验结果表明,基于类别的方法能够提高分类器的总体性能。