学科分类
/ 1
3 个结果
  • 简介:将网络连边的产生机制和其社团结构结合在一起,基于社团结构决定网络连边的假设推导出节点间的连接概率矩阵并表达为矩阵乘积的形式,然后利用非负矩阵分解得到节点间的连接概率矩阵进行网络重建。设计实验并在几个真实的网络数据上测试,相比基于相似度的网络重构算法,该算法取得了更好的网络重构效果。

  • 标签: 复杂网络 网络重构 社团结构 连接概率矩阵 非负矩阵分解
  • 简介:为提高粒子群算法的搜索效率,克服分解方法处理复杂多目标问题的不足,通过考虑父代解的选择和种群的更新对算法收敛性及解的分布均匀性的重要影响,提出了一种基于分解的改进自适应多目标粒子群优化算法。首先,为提高算法收敛速度,在分解方法确保进化种群多样性的前提下,设计了新的适应度评价方法以评价个体的优劣,并将在竞争中获胜的优质后代解添加到父代候选解中;其次,为避免算法陷入局部最优,在更新粒子时,从当前粒子的邻居或邻居外随机选择个体最优和全局最优位置;最后,引入外部文档,将其作为候选的输出种群,并采用拥挤距离维持多样性,增强了算法处理复杂问题的能力。用12个测试函数的数值实验,并与5种多目标优化算法的比较,表明了所提算法的优越性。

  • 标签: 粒子群算法(PSO) 自适应 适应度 分解 拥挤距离
  • 简介:

  • 标签: