简介:ONTHEDIFFERENTIABILITYOFTHEPARITYPROGRESSIVEPOPULATIONSEMIGROUP¥SHIDEMINGANDYANGLUSHAN(DepartmentofMathematics,ZhengzhouUnive...
简介:在最高项系数无界的条件下讨论了二阶椭圆型微分方程弱解的局部极大值原理及Harnack不等式.
简介:在非负定矩阵的偏序意义下讨论了对Cauchy-Schwarz不等式的推广,将随机变量情形下的Cauchy-Schwarz不等式推广到随机向量情形,而且两个随机向量的维数不要求相等,一个是随机变量另一个是随机向量是其中的一个特殊情形,另外还研究了有限维空间中的向量情形的Cauchy-Schwarz不等式在矩阵情形下的推广,得到一个十分简明的结果,并将此结果用于讨论一类随机向量簇的协方差阵的下界,不仅得到下界的具体表达式,而且给出能达到该下界的充分必要条件.
简介:利用文献[1]中非对称逼近的方法得到了周期型Bohr不等式.
简介:给出了实对称矩阵的Hoelder不等式,Minkowski不等式和算术几何平均值不等式。
简介:对一般的Bernouli不等式满足的条件作了一个新的限定,利用二项式定理和等卜匕数列的性质并采用分类讨论的思想证明了一个新的Bernouli不等式,由此不等式证明了经济学中的等额本金还款法和等额本息还款法的差异,并利用数值计算实验验证了此差异,从而由此结论给出了针对不同人群的还贷策略.
简介:Kantorovich不等式的推广文〔4〕给出了x′Ayy′A-1x/(x′xyy′)的上界,其中A是n阶实正定阵,x、y是n维非零实向量。本文给出x′Ayy′A-1x/(x′xy′y)的上界和下界,其中A是任何n×m实矩阵,A-1是A的广义加号逆,x、y分别是n维和m维非零实向量。