简介:一、启发提问图7-771.如图7-77,⊙O1、⊙O2沿直线O1O2作相向运动,请观察:(1)两圆有无公共点?若有公共点?有几个?(2)在哪几个位置时⊙O1与⊙O2有一个公共点?(3)在什么位置时⊙O1与⊙O2有两个公共点?2.设⊙O1的半径为r,⊙O2的半径为R,O1O2=d,试用d、R、r之间的数量关系表示两圆的五种位置关系.3.若两圆相切,则连心线必过.4.连心线是一条直线,相交两圆的连心线公共弧.二、能力训练1.填空图7-78(1)设⊙O1、⊙O2的半径分别为r、R(R≥r).O1O2=d,那么:①如图7-78,⊙O1与⊙O2相离,则dR+r.②如图7-79,⊙O1与⊙O2外切,则.③
简介:主要讨论了部分ToeplitzN-矩阵的完成问题及一类特殊结构的位置对称的部分N-矩阵的完成.
简介:研究目的:研究方法:通过有限元分析和极限分析,研究了在纵向和横向载荷下钢框架的最大负荷和坍塌模式,并考虑了塑性铰链住轴向力和弯曲力矩的作用下住实际旋转时的运动学。在垂直和水平方向载荷共存的情况下,基于轴向力和弯曲力矩的交互作用,研究延性框架的极限载荷和坍塌模式对产生于塑性铰链的真实运动学的敏感性。通过两个基本的案例和通过成功地评估非线性有限元分析和直接实施的极限分析步骤,并利用MATHEMATICA,揭示了其敏感性。在标准规程的框架下,即使在最简单的案例中,极限分析的主要结果也会考虑在坍塌时的运动学,这与设计和加固的目的都是相关的。如果没有对所有的结构元件的轴向力和弯曲力矩的交互作用进行合理的计算,塑性铰链的定位计算可能得出不正确的坍塌机理和误导性的安全系数。就具体方面而言,本文清楚地表明,在设计新的结构或者为现有结构进行加固时,即使是使用看起来已经非常完备的经典步骤,也必须非常小心。本文的模型可以为处理规程设计的执业工程师和标准化委员会提供参考。
简介:针对惯性器件输出噪声引起高精度机载POS(PositionandOrientationSystem)地面双位置对准精度较差的问题,提出基于小波滤波和隐马尔科夫建模的数据预处理方法结合自适应卡尔曼滤波的双位置对准方法。首先分析惯性敏感器原始信息的频率特性,利用小波滤波算法,消除惯性器件测量中的高频噪声;综合分析器件的随机游走特性,通过建立隐马尔科夫模型削弱惯性敏感器输出随机游走的影响;并针对降噪处理、电源波动及环境因素等引起的系统噪声统计规律不确定性问题,提出利用自适应卡尔曼滤波的方法实现POS高精度初始对准。试验结果表明,采用本文所提方法的对准结果,可使对准结束后600s纯捷联解算的水平速度误差由1.278m/s减小至0.6061m/s,水平位置误差由274.6m减小至128.2m,水平速度和位置误差均减小了50%左右。