简介:希尔伯特在巴黎国际数学家代表大会上发表演讲《数学问题》,并指出数学问题乃是数学前进的指路明灯.之后,问题解决成了国际教育改革的一个热点问题.问题解决的目的是提高学生解决实际问题的能力,而这种能力的培养是通过一系列创造性的思维活动过程来完成,其中就包括了直观思维.直观思维区别于逻辑思维,是数学教学过程中一种重要的思维方法,它是不经过逐步分析,而迅速对问题的答案作出合理猜测、设想和顿悟的一种跃进性思维,它是外界事物在人脑中的反应.数学问题的解决过程中,直观思维是一种主动的、自觉的或自动化的理解运用数学知识的态度和意识,它可以帮助学生用灵活的方法作出数学判断,针对数学问题的解决提出有效的策略.
简介:H_1,H_2,H_3是实希尔伯特空间,CH_1,QH_2是两个非空闭凸子集,AH_1→H_3,B:H_2→H_3是两个有界线性算子.我们的兴趣是解决下面的问题:找x∈C,y∈Q使得Ax=By.Moudafi提出了同步迭代算法(SIM)来解决分裂等式问题.为了利用同步迭代算法(SIM),在计算步长时需要知道有界线性算子的范数,这个范数的数值计算中难以实现.本文的主要目的是介绍一种选择步长的方式使得同步迭代算法的完成不需要任何算子的范数.同时,松弛的同步迭代算法也被提出.最后,论文通过数值试验得出这种步长的选择方法使得并行迭代算法收敛更快.