简介:在本文中,研究了一致凸Banach空间中平均非扩张中映射的IBhikawa迭代的收敛问题,证明关于平均非扩张映射的Ishikawa迭代收敛定理。
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象的修正Ishikawasa三重迭代序列的强收敛问题,建立并证明了若干强收敛定理,推广了Mann和Ishikawa的迭代方法,改进和发展了Xu和贾如鹏等作者的主要结果.
简介:文章运用Orlicz空间和Lebesgue-Bochner空间理论及技巧,给出了Orlicz-Bochner空间在赋以Luxemburg范数时,球面上的点为各向一致凸点的充分性条件和空间具有各向一致凸性质的充要条件。
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:研究p-致凸Banach空间中渐近半压缩映象的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性.本文始终假设X是P-致凸Banach空间.最近,r-渐近半压缩映象的概念被引入,并给出了X中该映象(此时,r=P)的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性定理,文章所得结果改进、推广和统一了近期相关结果.