简介:引入点态非方常数的定义并给出其等价表达形式,同时给出点态非方常数在赋Luxemburg范数Orlicz序列空间和Orlicz函数空间的估计以及在1p和Lp空间的计算值.
简介:本文在Menger概率赋范空间中引入概率收缩偶的概念,研究了Menger概率赋范空间中具概率收缩偶的非线性方程组的解的存在性与唯一性,发展和改进了文献[1~3]的相应结果。
简介:推广了Mazur-Ulam定理和Aleksbndrov问题到非阿基米德2-赋范空间。证明了两个非阿基米德空间的任何2-等距是仿射的;一个单位距离保持映射是2-等距当且仅当它保持零距离。
简介:摘要院通过给出L-模糊赋范空间中点列收敛的概念,本文建立L-模糊赋范空间中的不动点定理,推广了泛函分析中的不动点定理。
简介:关于凸函数局部有上界和函数Lipschitz连续性的等价性已经被多次研究过,但是这些研究都未曾涉及凸函数的Lipschitz连续性与函数有下界的关系.本文利用Hamel基构造了一个反例,说明了即使凸函数在全空间有下界也不能得到函数的Lipschitz连续性.接着,在空间完备的情形下,运用Baire纲理论证明了,函数在某一球型邻域内均下半连续等价于函数的Lipschitz连续性.
简介:讨论了Banach空间X中带有非局部条件的半线性发展方程.在g失去紧性的条件下,利用L^p(I;X)空间中的不动点定理,对边值问题适度解的存在性做了研究,完善和推广了已有结论.最后给出一个在偏微分方程中的例子.