简介:近年来,不确定性分析方法在核电领域越来越受到重视,然而作为系统程序的计算分析工作具有计算量大、任务繁琐、分析参数复杂、容易发生人工错误等问题。因此,建立自动化或简化方法以提高效率和降低人为错误的措施将有助于不确定性分析方法的应用和发展。本文对基于SNAP平台的DAKOTA-RELAP不确定性分析方法进行了详细的介绍,并通过对典型压水堆的大破口事故进行模拟,描述了DAKOTA-RELAP5不确定性分析方法在大破口事故中应用的特点。研究表明,这种不确定性分析方法能够有效的简化程序建模和数据处理的流程,并且能够方便的对计算结果进行处理分析,可较好地提高计算效率和准确度。
简介:内乌肯(Neuquen)盆地上侏罗统一下白垩统瓦卡穆尔塔组(VacaMuerta)(VM)是阿根廷很多常规油气田的重要烃源岩。随着该国页岩油气勘探开发的兴起,很多公司开始对瓦卡穆尔塔组页岩区带进行描述。用于识别页岩区带的特征参数比较多,其中之一就是总有机碳(TOC)含量;TOC较高的地方产量也较高。不过我们无法直接通过地震资料对其进行测量,只能通过间接方法进行估测。考虑到TOC对纵波和横波速度以及密度的影响,地球科学家试图利用TOC与P-波阻抗之间的线性或非线性关系来计算TOC。我们认为,利用该方法对瓦卡穆尔塔组进行描述存在较大的不确定性,因此提出了一种不同的描述方法。由于伽马值(GR)和TOC之间可能存在线性关系,所以除P-波阻抗之外,伽马值是另一个可以用来描述瓦卡穆尔塔组的参数。利用P-波阻抗和GR数据体和贝叶斯分类法,基于TOC及其相关的不确定性建立了由不同岩相构成的储层模型。首先,根据由测井数据计算的GR和P-波阻抗的截止值识别不同的岩相。然后利用高斯椭圆法确定GR与P-波阻抗的交会图上数据的分布。接下来,根据高斯椭圆确定每个岩相的二维概率密度函数(PDFs)。将这些PDFs与GR及P-波阻抗数据体相结合,就可以在3D数据体(3Dvolume)内识别不同的岩相。通过基于模型的叠后反演来计算P一波阻抗,同时使用概率神经网络(PNN)法来计算GR。用此方法得到的P-波阻抗和GR与3D数据体内的盲井具有很好的一致性,这增强了我们利用该方法对瓦卡穆尔塔组进行描述的信心。把以曲率线性特征(curvaturelineaments)表示的不连续性叠加在目的层的TOC图上,有助于得出更全面的认识,进而帮助优化水平井的部署方案。