简介:利用重合度理论中的延拓定理,讨论了一类乘积型Logistic系统正周期解的存在性.
简介:摘要:向量作为一类基础的数学工具,其具备着大小和方向的特性。向量能够简便地解析几何关系,亦是线性代数的基本概念。通过了解向量的性质以及几何意义能够清晰地理解向量赋予实际应用方面的含义。
简介:运用Furstenberg族的语言,探讨拓扑乘积系统(X×X,T×T)的初值敏感性,得到了若干个基本的结论.
简介:设Gl和岛是两个连通图,则G1和G2的Kronecker积GIXG2定义如下:V(G1×G2)=V(G1)×V(G2),E(G1×G2)=((ul,vl)(u2,u2):ulu2∈E(G1),ulu2∈.E(G2)).我们证明了G×Kn(n〉4)超连通图当且仅当k(G)n〉6(G)(n-1),其中G是任意的连通图,Kn是n阶完全图.进一步我们证明了对任意阶至少为3的连通图G,如果圪(G)=δ(G),则G×Kn(n〉3)超连通图.这个结果加强了郭利涛等人的结果.
简介:图G的pebbling数f(G)是最小的整数n,使得不论n个Pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把一个pebble移到任意一个顶点上,其中的pebbling移动是从一个顶点上移走两个pebble,而把其中的一个移到与其相邻的一个顶点上。Graham猜测对于任意的连通图G和H有f(G×H)≤f(G)f(H),证明了对于一个星形图和一个满足2-pebbling性质的图的情形下Graham猜想成立,作为推论,出两个星形图乘积的Graham猜想成立。