简介:本文研究了一般Riemann积分(即k-重积分)与Lebesgue积分的关系,证明了:若函数f在有界闭域D()Rk上Riemann可积,则f在D上Lebesgue可积且积分值相等.作为应用,讨论广义Riemann积分(即瑕积分与无穷限积分)与Lebesgue积分的关系.进而,给出了计算几类Lebesgue积分的方法.
简介:本文研究了Riemann积分和Lebesgue积分的本质区别,得到了结论:从Riemann积分推广到Lebesgue积分的本质是从不完备空间R[a,b]到完备空间L[a,b]的扩充.
简介:【摘要】在小学阶段,班级作为学生集体的一种基本单位,管理效果能在很大的程度上影响学生的学习质量。在实际的工作中,有效运用“积分奖励制”不仅能提高班级民主化,还能帮助学生建立清楚的自我认知,促进班级管理进步。本文从 “积分制实施原则”、“积分制实施策略”“促进学生能力提升”三方面助力班集体建设展开了一系列的研究。
简介:本文给出了Riemann(黎曼)积分Lebesgue(勒贝格)积分和Henstock积分的关系,并从度量空间加以阐明
简介:定义了向量筐函数的C-Stieltjes近似可表示算子,并研究了它的性质。另外,我们定义了向量值函数的近似C-Stieltjes积分,并证明了它的收敛定理。
简介:摘要:近几年社会内卷现象日益严重,随着各类与高数有关考试考试难度变大,定积分的证明也是这几类考试中“常客”此类题目立足于高数基础而又构思巧妙关联性强大,往往得分不甚理想。笔者试图找到一类这种问题证明的通法,使得这类问题从本质上得以顺利解决,这类问题往往依赖于两个基本的定积分定理。