简介:摘要:最近出现的像物联网和大数据这样的尖端计算技术,导致了一个可以生成、收集和利用大规模数据的新时代。现在不仅可以更容易地获得数据量,而且还可以获得以前难以获得的信息和知识。在不同的领域,如能源、气候、经济、商业和医疗保健,由于数据采集故障、传输过程异常、机器运行中的设备故障等等原因,导致在这些领域往往存在数据部分缺失的问题。缺失的值被认为是数据分析中的主要障碍,因为它们扭曲了数据的统计特性,减少了可用性。缺失的值不仅会破坏原始数据分布的完整性和平衡性,而且还会影响相关场景的后续分析和应用,因此时间序列中缺失值的处理已经成为一个非常重要的问题,同时时间序列数据在数据挖掘和分析中具有重要的价值。
简介:摘要:蓄水调水和治理泥沙一直都是治理黄河河段的基本工作之一,但在研究黄河水文时,由于黄河水沙通量较大,数据特性分析难度大。本文建立模型实现基于不同时间序列的数据汇总分析。利用距平值对突变性进行分析;通过可视化分析,研究所表现出的周期变化;季节性水沙通量最大值往往出现在夏季,最小值往往出现在冬季;通过spsspro建立水沙通量的季节性ARIMA模型来研究其变化规律,发现季节性数据的水流量的拟合度0.724,排沙量拟合度为0.764,拟合效果较好;能较好的进行预测分析,并为黄河水流管理提供理论依据。
简介:【摘要】我国黄河流域水沙通量的变化对环境治理、气候变化和人民生活有着重要意义。本文首先根据现有数据进行可视化分析,研究含沙量与时间、水位、水流量的关系,然后利用相关分析确认含沙量与水位、水流量为线性关系,最后采用“分割-近似代替-求和”的方法求出年总水流量和年总排沙量。
简介:【摘要】因黄河受季节性强降雨的影响,影响生态环境的稳定,本文根据其水沙通量的变化趋势,建立 ARIMA 时间序列分析模型,对 2022 年和 2023 年的水沙通量进行预测。分析预测出的未来两年水沙通量随时间的变化曲线,根据其斜率变化与突变特点定制出未来两年即能及时掌握水沙通量实时状态,又能减少投资成本的最优方案。