简介:美国数学家R.A.约翰逊在其名著[1]中,介绍了如下两个奇妙的共圆点定理:定理1在三角形中,以高的垂足为圆心,作通过外心的圆,与垂足所在的边相交,则这样得到的6个交点在同一个圆上,圆心是这三角形的垂心.定理2在三角形中,以各边的中点为圆心,作通过垂心的圆,与这条边相交,则这样得到的6个交点在同一个圆上,圆心是这三角形的外心.这两个定理中的“6点圆”,都称为杜洛斯——凡利(Droz—Farny)圆.有趣的是,对于同一个三角形来说,这两个“6点圆”还是等圆!本文拟将定理1和定理2推广到一般圆内接闭折线中.为了叙述简便起见,本文约定:(i)符号A(n)表示平面闭折线123n1AAALAA;(ii)从A(n)的n个顶点中任意除去一个顶点(1jA≤j≤n),其余n?1个顶点组成的集合,称为A(n)的一级顶点子集,记作jV.定义设闭折线A(n)内接于(O,R),(I)若点H满足1niiOHOA==∑uuuuruuur,①则点H称为闭折线A(n)的垂心(容易验证,此定义与文[2]中的坐标法定义等价);(II)对A(n)的一级顶点子集jV,若点jE满足1()/2njijiOEOAOA==?∑uuuur...