简介:摘要针对智能交通卡口中车辆颜色提取在定位和分类方面存在的准确性问题,本文提出了一种在移动侦测环境下动态鲁棒的车辆颜色提取与识别算法。实验结果表明,本文算法较传统算法在实际应用有着更好的精度和鲁棒性。
简介:摘要:为了加强与聋哑人群的无障碍沟通,团队提出了一种高效的手语识别技术。该项技术是利用了改良后的HOG算法、SVM技术和改进Canny算法。HOG算法的改良解决了主、副对角线上像素的灰度信息的问题;结合使用SVM技术,对静止哑语姿势进行特征提取和训练,从而有效捕捉手势的关键特征;改进Canny算法解决移动边界的提取问题,最大限度的提升了识别率和识别速度。通过实验验证,我们发现这种方法在识别成功率和时间效率方面,都优于传统的HOG特征结合SVM的方法。这种技术的实现,为聋哑人士与听力正常人群之间的交流提供了更加流畅的通道,是无障碍通信领域的一大进步。
简介:为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIghtDetectionAndRanging,LIDAR)深度信息和视觉方向梯度直方图(HistogramsofOrientedGradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。
简介:针对新型作战体系下以装甲车辆为主的地面目标的被动声识别问题,为实现不同车型在不同工况下的声识别,以常见的3种坦克和4种履带式装甲车为识别对象,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和人工蜂群(ArtificialBeeColony,ABC)算法优化的支持向量机(SupportVectorMachine,SVM)相结合的装甲车辆声识别模型。首先,采集不同工况下的车辆噪声信号并进行频谱分析,证明了VMD分解的可行性;其次,对样本信号进行VMD分解,得到不同尺度的本征模态函数(IntrinsicModeFunction,IMF)并进行多尺度模糊熵(Multi-scaleFuzzyEntropy,MFE)的计算,得到多尺度模糊熵特征(VMD-MFE);然后,利用优化算法对SVM进行优化,得到最优参数优化的分类器模型;最后,对噪声信号进行特征提取和分类实验。结果表明:VMD的分解效果优于经验模态分解(EmpiricalMadeDecomposition,EMD)和集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD);与引力搜索算法(GravitationalSearchAlgorithm,GSA)和布谷鸟搜索(CuckooSearch,CS)算法相比,ABC算法得到的优化模型ABC-SVM具有更高的识别率,可达94.14%以上。
简介:提出了一种基于级联投影的高斯混合模型算法。首先,针对不同的特征维度计算高斯混合模型的边缘概率,依据边缘概率模型构造出多个子分类器,每个子分类器包含不同的特征组合。采用级联结构的框架对子分类器进行动态融合,从而获得对样本的自适应能力。其次,在心电情感信号和语音情感信号上验证了算法的有效性,通过实验诱发手段,采集了烦躁、喜悦、悲伤等情感数据。最后,探讨了情感特征参数(心率变异性、心电混沌特征,语句级静态特征等)的提取方法。研究了情感特征的降维方法,包括主分量分析、顺序特征选择、Fisher区分度和最大信息系数等方法。实验结果显示,所提算法能够在2种不同的场景中有效地提高情感识别的准确率。
简介:摘要:创建一个舒适的居住环境是每个人的愿望,而有效的空间布局和色彩搭配是实现这一目标的关键。本文探讨了如何利用这两个要素来打造舒适的居住环境。首先,我们强调了空间布局的作用,包括功能区划、家具布置和空间设计。合理的布局可以提高空间的流畅性和室内通风,创造出更宜人的居住空间。其次,我们讨论了色彩搭配的原则和技巧,包括色彩心理学、色彩选择和避免常见的搭配误区。正确的色彩选择可以影响居住者的情绪和舒适感。最后,我们提到了舒适性评估和改进的重要性,通过客观标准和反馈信息来不断完善居住环境。综合这些因素,我们可以创造出一个舒适、温馨的家,满足人们对宜居空间的愿望。
简介:地形辅助导航是一种利用地形高度信息定位的导航技术,由于地形高度起伏是非线性的,因此地形辅助导航本质是非线性、非高斯贝叶斯后验概率估计问题。粒子滤波因为适合非线性、非高斯估计问题,被引入地形辅助导航领域得到广泛研究和应用,但粒子滤波算法存在粒子匮乏的问题,会影响定位精度。针对此问题,将高斯混合无迹粒子滤波(GMUPF)用于地形辅助导航,该算法用高斯混合模型(GMM)近似粒子分布,用无迹卡尔曼滤波(UKF)估计重要密度函数,不需要做重采样。通过用实际地形数据做飞行仿真实验,结果显示相比粒子滤波,不仅没有粒子匮乏问题,而且所用粒子数更少时估计精度略好。