简介:分子动力学技术在冲击诱导爆轰领域的应用正在为爆轰相关的物理化学过程带来新的理解。反应力场(ReaxFF)、反应经验键级(REBO)以及反应态加和(RSS)势函数作为从分子层面上揭示冲击起爆内在机制的强有力模型工具,已用在冲击诱导分解研究中观察到初始分子结构的取向相对冲击波传播方向的不同而会呈现不同的响应,受冲击的分子在平动和转动之间转换的同时传递能量。对非均质含能材料冲击起爆的分子模拟则多集中在空洞塌陷和非均质界面的热点成长等问题上。另外,用分子动力学技术对凝聚相爆轰的稳定性进行研究,论证了活化能和爆轰稳定性的关系,并得到二维拱顶石结构和三维湍流图像。就冲击诱导分解、热点机制以及爆轰稳定性在微观层面上的研究加以综述,并试图为理解冲击起爆现象提供补充和思考。
简介:基于氢气的旋转爆轰发动机研究较多,而碳氢燃料与空气混合较为困难,导致基于乙烯的旋转爆轰发动机燃烧技术难度很高.使用宽视野范围的可视化燃烧室观察旋转爆轰波的研究在国内尚未开展.在同一燃烧室内进一步开展了乙烯或氢气的吸气式旋转爆轰实验,来流总温为283~284K,燃烧室壁面有140°石英玻璃观察窗,便于观察旋转爆轰波运动过程.空筒燃烧室爆轰环腔外径为100mm,轴向长度为151mm.燃料通过150个直径0.8mm圆柱孔进入燃烧室,空气通过喉部1mm宽的收敛扩张环缝流入环腔.高速摄影和低高频压力传感器均验证了旋转爆轰波的存在和速度值.以氢气为燃料的旋转爆轰波速度最高可达理论值的101%,爆轰波增压效应可达40%左右,乙烯旋转爆轰波速度可达理论值的89%.旋转爆轰波结构容易发生变化,不规则.氢气旋转爆轰的维持对燃烧室的结构要求比碳氢燃料要低,比乙烯旋转爆轰波更加稳定.
简介:【摘要】在化工行业工厂内控制室作为生产控制中心,一旦发生爆炸事故后果将及其严重,因此必须采取能够充分保证操作人员和控制设备安全的防护措施,在保证人员和设备安全的同时可有效降低次生灾害发生的概率。使用框架抗爆墙结构可完美解决这一问题,即可提供安全防护措施又可满足建筑使用需求。