简介:摘要介绍基本粒子群优化算法的原理、特点,并在此基础上提出了一种改进的粒子群算法。通过在粒子初始化时引入相对基的原理使粒子获得更好的初始解,以及在迭代过程中引入变异模型,部分粒子生成相对应的扩张及收缩粒子,比较其适应度,保留最佳粒子进行后期迭代,使算法易跳出局部最优。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。
简介:为了改善常规PID算法在电动助力转向系统(EPS)控制中的不足,提高系统控制的精度、稳定性和抗干扰能力,采用粒子群算法(PSO)对PID控制器进行优化.根据EPS系统结构和动力学特性,建立了EPS系统数学模型.电机采用电流控制法,并以助力特性曲线中理想电流值与电机电流实际输出值的偏差作为PID控制器的输入.利用MATLAB平台建立EPS系统PID控制的整车模型,分析研究粒子群算法,并根据PSO算法优化PID控制器的参数.仿真结果表明:与常规PID控制相比,采用粒子群优化的PID控制,系统输出响应更平稳,抗干扰能力更强,鲁棒性好,控制效果更优.
简介:针对粒子群算法无线传感器网络(WSN)覆盖优化中算法稳定性较差,后期收敛速度慢和易陷入局部最优问题,本文提出了一种自适应扰动混沌的粒子群(AdaptiveDisturbanceChaoticParticleSwarmOptimization,简称ADCPSO)的覆盖增强算法。一是在覆盖范围中应用改进的混沌Tent映射对粒子初始化,提高了种群的求解质量和算法的稳定性;二是采用非线性递减的惯性权重和学习因子自适应操作;三是根据一定概率对粒子位置进行扰动更新,避免粒子陷入局部收敛的问题。仿真结果表明,该算法具有良好的全局搜索能力,稳定性好,提高了网络覆盖率。